169 research outputs found
Confidence trick: the interpretation of confidence intervals
The frequent misinterpretation of the nature of confidence intervals by students has been well documented. This article examines the problem as an aspect of the learning of mathematical definitions and considers the tension between parroting mathematically rigorous, but essentially uninternalized, statements on the one hand and expressing imperfect but developing understandings on the other. A small-scale study among schoolteachers sought comments on four definitions expressing differing understandings of confidence intervals, and these are examined and discussed. The article concludes that some student wordings could be regarded as less inaccurate than they might seem at first sight and presents a case for accepting a wider range of more intuitive understandings as a work in progress
Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models
The upcoming many-core architectures require software developers to exploit
concurrency to utilize available computational power. Today's high-level
language virtual machines (VMs), which are a cornerstone of software
development, do not provide sufficient abstraction for concurrency concepts. We
analyze concrete and abstract concurrency models and identify the challenges
they impose for VMs. To provide sufficient concurrency support in VMs, we
propose to integrate concurrency operations into VM instruction sets.
Since there will always be VMs optimized for special purposes, our goal is to
develop a methodology to design instruction sets with concurrency support.
Therefore, we also propose a list of trade-offs that have to be investigated to
advise the design of such instruction sets.
As a first experiment, we implemented one instruction set extension for
shared memory and one for non-shared memory concurrency. From our experimental
results, we derived a list of requirements for a full-grown experimental
environment for further research
The Murchison Widefield Array: Design Overview
The Murchison Widefield Array (MWA) is a dipole-based aperture array
synthesis telescope designed to operate in the 80-300 MHz frequency range. It
is capable of a wide range of science investigations, but is initially focused
on three key science projects. These are detection and characterization of
3-dimensional brightness temperature fluctuations in the 21cm line of neutral
hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10,
solar imaging and remote sensing of the inner heliosphere via propagation
effects on signals from distant background sources,and high-sensitivity
exploration of the variable radio sky. The array design features 8192
dual-polarization broad-band active dipoles, arranged into 512 tiles comprising
16 dipoles each. The tiles are quasi-randomly distributed over an aperture
1.5km in diameter, with a small number of outliers extending to 3km. All
tile-tile baselines are correlated in custom FPGA-based hardware, yielding a
Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point
spread function (PSF) quality. The correlated data are calibrated in real time
using novel position-dependent self-calibration algorithms. The array is
located in the Murchison region of outback Western Australia. This region is
characterized by extremely low population density and a superbly radio-quiet
environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings
of the IEE
An Intraocular Pressure Polygenic Risk Score Stratifies Multiple Primary Open-Angle Glaucoma Parameters Including Treatment Intensity
Purpose: To examine the combined effects of common genetic variants associated with intraocular pressure (IOP) on primary open-angle glaucoma (POAG) phenotype using a polygenic risk score (PRS) stratification. Design: Cross-sectional study. Participants: For the primary analysis, we examined the glaucoma phenotype of 2154 POAG patients enrolled in the Australian and New Zealand Registry of Advanced Glaucoma, including patients recruited from the United Kingdom. For replication, we examined an independent cohort of 624 early POAG patients. Methods Using IOP genome-wide association study summary statistics, we developed a PRS derived solely from IOP-associated variants and stratified POAG patients into 3 risk tiers. The lowest and highest quintiles of the score were set as the low- and high-risk groups, respectively, and the other quintiles were set as the intermediate risk group. Main Outcome Measures: Clinical glaucoma phenotype including maximum recorded IOP, age at diagnosis, number of family members affected by glaucoma, cup-to-disc ratio, visual field mean deviation, and treatment intensity. Results: A dose–response relationship was found between the IOP PRS and the maximum recorded IOP, with the high genetic risk group having a higher maximum IOP by 1.7 mmHg (standard deviation [SD], 0.62 mmHg) than the low genetic risk group (P = 0.006). Compared with the low genetic risk group, the high genetic risk group had a younger age of diagnosis by 3.7 years (SD, 1.0 years; P < 0.001), more family members affected by 0.46 members (SD, 0.11 members; P < 0.001), and higher rates of incisional surgery (odds ratio, 1.5; 95% confidence interval, 1.1–2.0; P = 0.007). No statistically significant difference was found in mean deviation. We further replicated the maximum IOP, number of family members affected by glaucoma, and treatment intensity (number of medications) results in the early POAG cohort (P ≤ 0.01). Conclusions: The IOP PRS was correlated positively with maximum IOP, disease severity, need for surgery, and number of affected family members. Genes acting via IOP-mediated pathways, when considered in aggregate, have clinically important and reproducible implications for glaucoma patients and their close family members
Cell-intrinsic differences between human airway epithelial cells from children and adults
Summary
The airway epithelium is a protective barrier that is maintained by the self-renewal and differentiation of basal stem cells. Increasing age is a principle risk factor for chronic lung diseases, but few studies have explored age-related molecular or functional changes in the airway epithelium. We retrieved epithelial biopsies from histologically normal tracheobronchial sites from pediatric and adult donors and compared their cellular composition and gene expression profile (in laser capture-microdissected whole epithelium, fluorescence-activated cell-sorted basal cells and basal cells in cell culture). Histologically, pediatric and adult tracheobronchial epithelium were similar in composition. We observed age-associated changes in RNA sequencing studies, including higher interferon-associated gene expression in pediatric epithelium. In cell culture, pediatric cells had higher colony-formation ability, sustained in vitro growth and out-competed adult cells in a direct competitive proliferation assay. Our results demonstrate cell-intrinsic differences between airway epithelial cells from children and adults in both homeostatic and proliferative states
Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.
Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article
Low-Frequency Observations of the Moon with the Murchison Widefield Array
A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system
First spectroscopic imaging observations of the sun at low radio frequencies with the Murchison Widefield Array Prototype
We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of "low" to "medium" activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
- …