478 research outputs found

    A-stable Runge-Kutta methods for semilinear evolution equations

    Get PDF
    We consider semilinear evolution equations for which the linear part generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. In this setting, we prove the existence of solutions which are temporally smooth in the norm of the lowest rung of the scale for an open set of initial data on the highest rung of the scale. Under the same assumptions, we prove that a class of implicit, AA-stable Runge--Kutta semidiscretizations in time of such equations are smooth as maps from open subsets of the highest rung into the lowest rung of the scale. Under the additional assumption that the linear part of the evolution equation is normal or sectorial, we prove full order convergence of the semidiscretization in time for initial data on open sets. Our results apply, in particular, to the semilinear wave equation and to the nonlinear Schr\"odinger equation

    Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by KATP channel overactivity

    Get PDF
    Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of KATP channel activity specifically in VSM, and by chronic administration of the clinically used KATP channel inhibitor, glibenclamide. These findings demonstrate that VSM KATP channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS

    Prescribing and using self-injectable antiretrovirals: How concordant are physician and patient perspectives?

    Get PDF
    The selection of agents for any treatment regimen is in part influenced by physician and patient attitudes. This study investigated attitudinal motivators and barriers to the use of self-injectable antiretroviral agents among physicians and patients and measured the degree of concordance between physician and patient perspectives

    Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy

    Get PDF
    Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM

    Clinical and Mucosal Immune Correlates of HIV-1 Semen Levels in Antiretroviral-Naive Men.

    Get PDF
    Background. This study was done to characterize parameters associated with semen human immunodeficiency virus (HIV)-1 ribonucleic acid (RNA) viral load (VL) variability in HIV-infected, therapy-naive men. Methods. Paired blood and semen samples were collected from 30 HIV-infected, therapy-naive men who have sex with men, and 13 participants were observed longitudinally for up to 1 year. Human immunodeficiency virus RNA, bacterial load by 16S RNA, herpesvirus (Epstein-Barr virus and cytomegalovirus [CMV]) shedding, and semen cytokines/chemokines were quantified, and semen T-cell subsets were assessed by multiparameter flow cytometry. Results. Semen HIV RNA was detected at 93% of visits, with \u3e50% of men shedding high levels of virus (defined as \u3e5000 copies/mL). In the baseline cross-sectional analysis, an increased semen HIV VL correlated with local CMV reactivation, the semen bacterial load, and semen inflammatory cytokines, particularly interleukin (IL)-8. T cells in semen were more activated than blood, and there was an increased frequency of Th17 cells and γδ-T-cells. Subsequent prospective analysis demonstrated striking interindividual variability in HIV and CMV shedding patterns, and only semen IL-8 levels and the blood VL were independently associated with semen HIV levels. Conclusions. Several clinical and immune parameters were associated with increased HIV semen levels in antiretroviral therapy-naive men, with induction of local proinflammatory cytokines potentially acting as a common pathway

    Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection

    Get PDF
    In this study, we demonstrate that the in vitro interactions between a CD56neg/CD16pos (CD56neg) subset of natural killer (NK) cells and autologous dendritic cells (DCs) from HIV-1–infected viremic but not aviremic individuals are markedly impaired and likely interfere with the development of an effective immune response. Among the defective interactions are abnormalities in the process of reciprocal NK–DC activation and maturation as well as a defect in the NK cell–mediated editing or elimination of immature DCs (iDCs). Notably, the lysis of mature DCs (mDCs) by autologous NK cells was highly impaired even after the complete masking of major histocompatibility complex I molecules, suggesting that the defective elimination of autologous iDCs is at the level of activating NK cell receptors. In this regard, the markedly impaired expression/secretion and function of NKp30 and TNF-related apoptosis-inducing ligand, particularly among the CD56neg NK cell subset, largely accounts for the highly defective NK cell–mediated lysis of autologous iDCs. Moreover, mDCs generated from HIV-1 viremic but not aviremic patients are substantially impaired in their ability to secrete interleukin (IL)-10 and -12 and to prime the proliferation of neighboring autologous NK cells, which, in turn, fail to secrete adequate amounts of interferon-γ

    The semen microbiome and its relationship with local immunology and viral load in HIV infection

    Get PDF
    Semen is a major vector for HIV transmission, but the semen HIV RNA viral load (VL) only correlates moderately with the blood VL. Viral shedding can be enhanced by genital infections and associated inflammation, but it can also occur in the absence of classical pathogens. Thus, we hypothesized that a dysregulated semen microbiome correlates with local HIV shedding. We analyzed semen samples from 49 men who have sex with men (MSM), including 22 HIV-uninfected and 27 HIV-infected men, at baseline and after starting antiretroviral therapy (ART) using 16S rRNA gene-based pyrosequencing and quantitative PCR. We studied the relationship of semen bacteria with HIV infection, semen cytokine levels, and semen VL by linear regression, non-metric multidimensional scaling, and goodness-of-fit test. Streptococcus, Corynebacterium, and Staphylococcus were common semen bacteria, irrespective of HIV status. While Ureaplasma was the more abundant Mollicutes in HIV-uninfected men, Mycoplasma dominated after HIV infection. HIV infection was associated with decreased semen microbiome diversity and richness, which were restored after six months of ART. In HIV-infected men, semen bacterial load correlated with seven pro-inflammatory semen cytokines, including IL-6 (p = 0.024), TNF-α (p = 0.009), and IL-1b (p = 0.002). IL-1b in particular was associated with semen VL (r(2)  = 0.18, p = 0.02). Semen bacterial load was also directly linked to the semen HIV VL (r(2) = 0.15, p = 0.02). HIV infection reshapes the relationship between semen bacteria and pro-inflammatory cytokines, and both are linked to semen VL, which supports a role of the semen microbiome in HIV sexual transmission

    Cardiovascular consequences of KATP overactivity in Cantu syndrome

    Get PDF
    Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS

    The semen microbiome and its relationship with local immunology and viral load in HIV infection

    Get PDF
    Semen is a major vector for HIV transmission, but the semen HIV RNA viral load (VL) only correlates moderately with the blood VL. Viral shedding can be enhanced by genital infections and associated inflammation, but it can also occur in the absence of classical pathogens. Thus, we hypothesized that a dysregulated semen microbiome correlates with local HIV shedding. We analyzed semen samples from 49 men who have sex with men (MSM), including 22 HIV-uninfected and 27 HIV-infected men, at baseline and after starting antiretroviral therapy (ART) using 16S rRNA gene-based pyrosequencing and quantitative PCR. We studied the relationship of semen bacteria with HIV infection, semen cytokine levels, and semen VL by linear regression, non-metric multidimensional scaling, and goodness-of-fit test. Streptococcus, Corynebacterium, and Staphylococcus were common semen bacteria, irrespective of HIV status. While Ureaplasma was the more abundant Mollicutes in HIV-uninfected men, Mycoplasma dominated after HIV infection. HIV infection was associated with decreased semen microbiome diversity and richness, which were restored after six months of ART. In HIV-infected men, semen bacterial load correlated with seven pro-inflammatory semen cytokines, including IL-6 (p = 0.024), TNF-α (p = 0.009), and IL-1b (p = 0.002). IL-1b in particular was associated with semen VL (r2 = 0.18, p = 0.02). Semen bacterial load was also directly linked to the semen HIV VL (r2 = 0.15, p = 0.02). HIV infection reshapes the relationship between semen bacteria and pro-inflammatory cytokines, and both are linked to semen VL, which supports a role of the semen microbiome in HIV sexual transmission
    • …
    corecore