16 research outputs found

    Theoretical interpretation of scanning tunneling microscopy images: Application to the molybdenum disulfide family of transition metal dichalcogenides

    Get PDF
    We have performed ab initio quantum mechanical calculations to describe scanning tunneling microscopy (STM) images of MoS_2 and MoTe_2. These results indicate that the interpretation of the STM images of these and related materials depends sensitively on experimental conditions. For example, determining whether the maximum tunneling current correlates to the top atom (S or Te) or to the second‐layer atom (Mo) requires information on the tip‐sample separation. Based on these results we discuss some STM experimental procedures which would allow assignment of the chemical identity of STM spots with greater certainty

    Parallel Calculation of Electron-Transfer and Resonance Matrix Elements of Hartree-Fock and Generalized Valence Bond Wave Functions

    No full text
    We review the theory for the computation of the Hamiltonian matrix element between two distinct electronic wave functions ψ_A and ψ_B sharing the same nuclear configuration but differing electronic density distributions. For example, ψ_A and ψ_B might describe two endpoints in an electron transfer reaction or two configurations in a resonance description of a molecule. In such cases the calculation of the rate of electron transfer or resonance energy requires evaluation of = H_(AB) matrix elements. Because the orbitals of ψ_A and ψ_B have complicated (non-orthogonal) relationships, the calculation of H_(AB) had been computationally intensive. In this paper we consider ψ_A, ψ_B having the form of closed or open-shell Hartree-Fock or Generalized Valence Bond wave functions and show the parallel structure of the theory. Using this parallel structure we present an efficient computational implementation for shared memory multiprocessors

    Carbothermal reduction of a primary ilmenite concentrate in different gas atmospheres

    Get PDF
    The carbothermal reduction of a primary ilmenite concentrate was studied in hydrogen, argon, and helium. Ilmenite and graphite were uniformly mixed and pressed into pellets. Reduction was studied in isothermal and temperature-programmed reduction experiments in a tube reactor with continuously flowing gas. CO, CO2, and CH4 contents in the off-gas were measured online using infrared sensors. The phase composition of reduced samples was characterized by X-ray diffraction (XRD). Oxygen and carbon contents in reduced samples were determined by LECO analyzers (LECO Corporation, St. Joseph, MI). The main phases in the ilmenite concentrate were ilmenite and pseudorutile. The reaction started with the reduction of pseudorutile to ilmenite and titania, followed by the reduction of ilmenite to metallic iron and titania. Titania was reduced to Ti3O5 and even more to Ti2O3, which was converted to titanium oxycarbide. Reduction was faster in hydrogen than in helium and argon, which was attributed to involvement of hydrogen in the reduction reactions. The formation of titanium oxycarbide in hydrogen started at 1000 oC and was completed in 300 minutes at 1200 oC, and 30 minutes at 1500 oC. The formation of titanium oxycarbide in argon and helium started at 1200 oC and was not completed after 300 minutes at 1300 oC

    The worldwide leaf economics spectrum

    Get PDF
    Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate

    Photosynthesis in poor nutrient soils, in compacted soils, and under drought

    No full text
    Plants require the uptake of nutrients (in most cases via roots) and their incorporation into plant organs for growth. In non-woody species, 83% of fresh weight is water, 7% is carbon, 5% is oxygen, with the remaining 5% including hydrogen and such nutrients. In natural ecosystems, availability of nutrients in soils is heterogeneous, and many species often adapt their growth to the amount of nutrients that roots can take up by exploring the available soil volume. In agricultural areas, the lack of some nutrients is frequent. In both cases, plants must also face periods of drought and soil compaction. These environmental stresses are therefore not uncommon in natural ecosystems and crops, and the stressed plants often experience a decrease in photosynthetic CO2 fixation. In this chapter, we review changes observed in photosynthesis in response to nutrient deficiencies, soil compaction, and drought. The current knowledge on photosynthesis in carnivorous plants, as a special case of plant species growing in nutrient poor soils, is also included. Pigment limitations (chlorosis and/or necrosis), stomatal limitations, ultrastructural effects and mesophyll conductance limitations, photochemistry (primary reactions), carboxylation and Calvin-cycle reactions, and carbohydrate metabolism and transport will be discussed. With regard to nutrients, we have focused on the most common nutrition-related stresses in plants, the deficiencies of macro- (nitrogen, phosphorous, and potassium) and micronutrients (iron, manganese, copper, and zinc). Other nutrient deficiencies (or toxicities, both in the cases of essential nutrient excess or heavy metals) are not reviewed here. For other nutrient deficiencies and toxicities, and the role of the above-mentioned, and other nutrients (such as calcium and magnesium) in gas exchange, and as intracellular signal transducers, enzyme activators, and structure and function stabilizers of biological membranes, readers are referred to papers published elsewhere (Marschner H, Mineral nutrition of higher plants. Academic, London, 1995; Cakmak I, Kirkby EA, Physiol Plant 133:692–704, 2008; Morales F, Warren CR, Photosynthetic responses to nutrient deprivation and toxicities. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological and ecological approach. Cambridge University Press, Cambridge, pp 312–330, 2012; Hochmal AK, Schulze S, Trompelt K, Hippler M, Biochim Biophys Acta 1847:993–1003, 2015).This study was supported by the Spanish Ministry of Economy and Competitiveness (MINECO; projects AGL2012-31988, AGL2013-42175-R, AGL2016-75226-R, and AGL2016-79868-R, co-financed with FEDER), the Aragón Government (Group A03), grant LO1204 (Sustainable development of research in the Centre of the Region Haná) from the National Program of Sustainability I, and by the Czech Science Foundation Agency (project 16-07366Y). FM wishes to thank JC Martínez for his help with some periodic bibliographic searches.Peer reviewe
    corecore