460 research outputs found

    Optical properties of planar chiral meta-materials

    No full text
    The polarization state of visible light is found to be altered upon reflection from artificial two-dimensional chiral media. Arrays of metallic planar chiral structures were fabricated by electron beam lithography and ion beam milling. The characteristic dimensions on the chiral elements correspond to wavelengths in the near-IR. Our chiral media are found to induce strong polarization effects, with the handedness of individual elements having a direct effect on the sense and magnitude of rotation of the diffracted light

    Stretchable liquid-crystal blue-phase gels

    Get PDF
    Liquid crystalline polymers are materials of considerable scientific interest and technological value to society [1-3]. An important subset of such materials exhibit rubber-like elasticity; these can combine the remarkable optical properties of liquid crystals with the favourable mechanical properties of rubber and, further, exhibit behaviour not seen in either type of material independently [2]. Many of their properties depend crucially on the particular mesophase employed. Stretchable liquid crystalline polymers have previously been demonstrated in the nematic, chiral nematic, and smectic mesophases [2,4]. Here were report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that may have its optical properties manipulated by an applied strain and, further, remains electro-optically switchable under a moderate applied voltage. We find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and new possibilities for low-voltage electro-optic devices.Comment: 15 pages, 6 figures, additional data and discussion included. Supplementary videos available from F. Castles on reques

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-

    Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    Get PDF
    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11]

    Tinnitus referral pathways within the National Health Service in England: a survey of their perceived effectiveness among audiology staff

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the UK, audiology services deliver the majority of tinnitus patient care, but not all patients experience the same level of service. In 2009, the Department of Health released a Good Practice Guide to inform commissioners about key aspects of a quality tinnitus service in order to promote equity of tinnitus patient care in UK primary care, audiology, and in specialist multi-disciplinary centres. The purpose of the present research was to evaluate utilisation and opinions on pathways for the referral of tinnitus patients to and from English Audiology Departments.</p> <p>Methods</p> <p>We surveyed all audiology staff engaged in providing tinnitus services across England. A 36-item questionnaire was mailed to 351 clinicians in all 163 National Health Service (NHS) Trusts identified as having a tinnitus service. 138 clinicians responded. The results presented here describe experiences and opinions of the current patient pathways to and from the audiology tinnitus service.</p> <p>Results</p> <p>The most common referral pathway was from general practice to a hospital-based Ear, Nose & Throat department and from there to a hospital-based audiology department (64%). Respondents considered the NHS tinnitus referral process to be generally effective (67%), but expressed needs for improving GP referral and patients' access to services. 'Open access' to the audiology clinic was rarely an option for patients (9%), nor was the opportunity to access specialist counselling provided by clinical psychology (35%). To decrease the number of inappropriate referrals, 40% of respondents called for greater awareness by referrers about the audiology tinnitus service.</p> <p>Conclusions</p> <p>Respondents in the present survey were generally satisfied with the tinnitus referral system. However, they highlighted some potential targets for service improvement including 1] faster and more appropriate referral from GPs, to be achieved through education on tinnitus referral criteria, 2] improved access to psychological services through audiologist training, and 3] ongoing support from tinnitus support groups, national charities, or open access to the tinnitus clinic for existing patients.</p

    Understanding Galaxy Formation and Evolution

    Get PDF
    The old dream of integrating into one the study of micro and macrocosmos is now a reality. Cosmology, astrophysics, and particle physics intersect in a scenario (but still not a theory) of cosmic structure formation and evolution called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to explain the origin of galaxies. In these lecture notes, I first present a review of the main galaxy properties, highlighting the questions that any theory of galaxy formation should explain. Then, the cosmological framework and the main aspects of primordial perturbation generation and evolution are pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation, presenting a review on LCDM halo assembling and properties, and on the main candidates for non-baryonic dark matter. It is shown how the nature of elemental particles can influence on the features of galaxies and their systems. Finally, the complex processes of baryon dissipation inside the non-linearly evolving CDM halos, formation of disks and spheroids, and transformation of gas into stars are briefly described, remarking on the possibility of a few driving factors and parameters able to explain the main body of galaxy properties. A summary and a discussion of some of the issues and open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf). Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005 (submitted to the Editors on March 15, 2006

    Bayesian analysis of cosmic structures

    Full text link
    We revise the Bayesian inference steps required to analyse the cosmological large-scale structure. Here we make special emphasis in the complications which arise due to the non-Gaussian character of the galaxy and matter distribution. In particular we investigate the advantages and limitations of the Poisson-lognormal model and discuss how to extend this work. With the lognormal prior using the Hamiltonian sampling technique and on scales of about 4 h^{-1} Mpc we find that the over-dense regions are excellent reconstructed, however, under-dense regions (void statistics) are quantitatively poorly recovered. Contrary to the maximum a posteriori (MAP) solution which was shown to over-estimate the density in the under-dense regions we obtain lower densities than in N-body simulations. This is due to the fact that the MAP solution is conservative whereas the full posterior yields samples which are consistent with the prior statistics. The lognormal prior is not able to capture the full non-linear regime at scales below ~ 10 h^{-1} Mpc for which higher order correlations would be required to describe the matter statistics. However, we confirm as it was recently shown in the context of Ly-alpha forest tomography that the Poisson-lognormal model provides the correct two-point statistics (or power-spectrum).Comment: 11 pages, 1 figure, report for the Astrostatistics and Data Mining workshop, La Palma, Spain, 30 May - 3 June 2011, to appear in Springer Series on Astrostatistic

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore