74 research outputs found

    Architecture et bibliothèque

    Get PDF
    En 2012, l’enssib a saisi l’opportunité de ses vingt ans pour publier dans ses Presses un ouvrage hors collection : "Architecture et bibliothèque, 20 ans de constructions", lequel proposait un tour d’horizon des questions posées par la place du bâtiment dans nos problématiques professionnelles. C’est à partir de points de vue parfois divergents, souvent complémentaires, des architectes, conservateurs de bibliothèques, élus, journaliste et programmiste, que s’ouvrait la réflexion. Dans le prolongement de cet ouvrage, et parce que la question est loin d’être épuisée, la journée « Architecture et bibliothèque » a fait entendre la parole d’architectes bâtisseurs de bibliothèques. Comment penser et bâtir ensemble la bibliothèque de demain, tel fut le fil rouge de cette journée. Afin de mieux comprendre les spécificités de la construction d’établissements publics et plus particulièrement des bibliothèques comparativement aux autres lieux de culture. Afin de s’interroger sur le statut emblématique ou non de la bibliothèque du futur, dans un univers culturel qui tend à devenir immatériel. Afin de se situer dans la cité, tant symboliquement, démocratiquement que du point de vue de l’urbanisme. Afin de repenser la place de l’usager, du lecteur, et sans doute aussi du professionnel au sein de la bibliothèque en construction. Pour toutes ces raisons, la question de l’architecture se place au coeur du métier de bibliothécaire

    Chemical characterization of inks in skin reactions to tattoo

    Get PDF
    Skin reactions are well described complications of tattooing, usually provoked by red inks. Chemical characterizations of these inks are usually based on limited subjects and techniques. This study aimed to determine the organic and inorganic composition of inks using X-ray fluorescence spectroscopy (XRF), X-ray absorption spectroscopy (XANES) and Raman spectroscopy, in a cohort of patients with cutaneous hypersensitivity reactions to tattoo. A retrospective multicenter study was performed, including 15 patients diagnosed with skin reactions to tattoos. Almost half of these patients developed skin reactions on black inks. XRF identified known allergenic metals - titanium, chromium, manganese, nickel and copper - in almost all cases. XANES spectroscopy distinguished zinc and iron present in ink from these elements in endogenous biomolecules. Raman spectroscopy showed the presence of both reported (azo pigments, quinacridone) and unreported (carbon black, phtalocyanine) putative organic sensitizer compounds, and also defined the phase in which Ti was engaged. To the best of the authors' knowledge, this paper reports the largest cohort of skin hypersensitivity reactions analyzed by multiple complementary techniques. With almost half the patients presenting skin reaction on black tattoo, the study suggests that black modern inks should also be considered to provoke skin reactions, probably because of the common association of carbon black with potential allergenic metals within these inks. Analysis of more skin reactions to tattoos is needed to identify the relevant chemical compounds and help render tattoo ink composition safer.Peer reviewe

    XANES spectroscopy for the clinician

    Get PDF
    XANES spectroscopy, which uses synchrotron radiation as a probe, offers substantial information about the local structure of biological samples, encompassing those without long range order such as Pt anticancer molecules, and nanometre scale or amorphous particles of calcium phosphate. Its subcellular spatial resolution, as well as its capacity to operate at room temperatures and pressures represent major advantages for medical research. Moreover, paraffin embedded biopsy samples can be analysed without any further preparation, Key publications which illustrate these capacities are presented

    XANES spectroscopy for the clinician

    Get PDF
    XANES spectroscopy, which uses synchrotron radiation as a probe, offers substantial information about the local structure of biological samples, encompassing those without long range order such as Pt anticancer molecules, and nanometre scale or amorphous particles of calcium phosphate. Its subcellular spatial resolution, as well as its capacity to operate at room temperatures and pressures represent major advantages for medical research. Moreover, paraffin embedded biopsy samples can be analysed without any further preparation, Key publications which illustrate these capacities are presented

    Pathologies related to abnormal deposits in dermatology : a physico-chemical approach

    Get PDF
    Although numerous pathologies are associated with abnormal skin deposits, these remain poorly described, as accurate characterization continues to present a challenge for dermatologists. Their submicrometer size as well as their diverse chemistry require various characterization tools. We aim to exemplify characterization of endogenous and exogenous skin deposits in some selected skin diseases using different physico-chemical techniques. We begin with a presentation of selected dis-eases associated with skin deposits. We then present those of our results which show their variety of structure, location and chemical composition, obtained with various tools: Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy, X-ray fluorescence, vibra-tional spectroscopies, as well as techniques specific to synchrotron radiation. Our results constitute a real opportunity to improve diagnosis, and to understand the pathogenesis of many skin diseases, and opportunities for therapeutic intervention.Peer reviewe

    Relationship between calcinosis cutis in epidermal necrolysis and caspofungin, a physicochemical investigation

    Get PDF
    Epidermal necrolysis (EN) is a rare life-threatening condition, usually drug-induced and characterised by a diffuse epidermal and mucosal detachment. Calcinosis cutis is reported in various skin diseases, occurring preferentially with tissue damage, but has never been described in EN. Clinical, biological and histopathological characteristics of three patients were retrospectively obtained from medical charts. Immunohistochemistry of classical osteogenic markers was used to explore the pathogenesis of the calcifications; their chemical composition was determined by μ\mu Fourier transform infra-red (μ\mu FTIR) spectroscopy and their localization and morphology by field-emission scanning electron microscopy (FE-SEM). In a recent letter, part of the results of this investigation has been already presented. In this contribution, we have added original data to this previous letter. We have investigated a set of biopsies corresponding to patients who presented atypical healing retardation due to calcinosis cutis. Through FE-SEM observations at the nanometre scale, we describe different areas where are present voluminous calcifications at the surface, submicrometre spherical entities within the papillary dermis and then large “normal” fibres. FE-SEM observations show clearly that “large” calcifications are the result of an agglomeration of small spherical entities. Moreover, micrometre scale spherical entities are the results of an agglomeration of nanometer scale spherical entities. Finally, the last set of data seems to show that the starting point of the calcifications process is “distant” from the epidermis in part of the dermis which appears undamaged. Regarding the chemical composition of large calcifications, different μ\mu FTIR maps which underlined the presence of calcium-phosphate apatite have been gathered. Moreover, histopathology indicates that these pathological calcifications are not induced following a trans-differentiation of the skin cells into an osteochondrogenic phenotype. The association of caspofungin administration, known to induce in vitro intracellular calcium influx, and inflammation, induced by EN, known to favor dystrophic calcifications in various inflammatory skin diseases, could explain this never-before reported occurrence of calcinosis cutis

    Relationship between calcinosis cutis in epidermal necrolysis and caspofungin, a physicochemical investigation

    Get PDF
    Epidermal necrolysis (EN) is a rare life-threatening condition, usually drug-induced and characterised by a diffuse epidermal and mucosal detachment. Calcinosis cutis is reported in various skin diseases, occurring preferentially with tissue damage, but has never been described in EN. Clinical, biological and histopathological characteristics of three patients were retrospectively obtained from medical charts. Immunohistochemistry of classical osteogenic markers was used to explore the pathogenesis of the calcifications; their chemical composition was determined by μ\mu Fourier transform infra-red (μ\mu FTIR) spectroscopy and their localization and morphology by field-emission scanning electron microscopy (FE-SEM). In a recent letter, part of the results of this investigation has been already presented. In this contribution, we have added original data to this previous letter. We have investigated a set of biopsies corresponding to patients who presented atypical healing retardation due to calcinosis cutis. Through FE-SEM observations at the nanometre scale, we describe different areas where are present voluminous calcifications at the surface, submicrometre spherical entities within the papillary dermis and then large “normal” fibres. FE-SEM observations show clearly that “large” calcifications are the result of an agglomeration of small spherical entities. Moreover, micrometre scale spherical entities are the results of an agglomeration of nanometer scale spherical entities. Finally, the last set of data seems to show that the starting point of the calcifications process is “distant” from the epidermis in part of the dermis which appears undamaged. Regarding the chemical composition of large calcifications, different μ\mu FTIR maps which underlined the presence of calcium-phosphate apatite have been gathered. Moreover, histopathology indicates that these pathological calcifications are not induced following a trans-differentiation of the skin cells into an osteochondrogenic phenotype. The association of caspofungin administration, known to induce in vitro intracellular calcium influx, and inflammation, induced by EN, known to favor dystrophic calcifications in various inflammatory skin diseases, could explain this never-before reported occurrence of calcinosis cutis
    corecore