240 research outputs found

    On the inertia of heat

    Full text link
    Does heat have inertia? This question is at the core of a long-standing controversy on Eckart's dissipative relativistic hydrodynamics. Here I show that the troublesome inertial term in Eckart's heat flux arises only if one insists on defining thermal diffusivity as a spacetime constant. I argue that this is the most natural definition, and that all confusion disappears if one considers instead the space-dependent comoving diffusivity, in line with the fact that, in the presence of gravity, space is an inhomogeneous medium.Comment: 3 page

    Some thoughts about nonequilibrium temperature

    Full text link
    The main objective of this paper is to show that, within the present framework of the kinetic theoretical approach to irreversible thermodynamics, there is no evidence that provides a basis to modify the ordinary Fourier equation relating the heat flux in a non-equilibrium steady state to the gradient of the local equilibrium temperature. This fact is supported, among other arguments, through the kinetic foundations of generalized hydrodynamics. Some attempts have been recently proposed asserting that, in the presence of non-linearities of the state variables, such a temperature should be replaced by the non-equilibrium temperature as defined in Extended Irreversible Thermodynamics. In the approximations used for such a temperature there is so far no evidence that sustains this proposal.Comment: 13 pages, TeX, no figures, to appear in Mol. Phy

    Surface modification of polyethylene terephthalate (PET) by corona discharge plasma

    Get PDF
    Surface modification of polyethylene terephthalate (PET) was studied by corona discharge plasma at different exposure times using air as working gas. The modification of the surface properties are characterized, those are morphology and wettability. Corona plasma treatment was found to modify the PET surface in both morphology and wettability. The corona discharge at atmospheric pressure is a heterogeneous with multiple current pulses, which generates an asymmetric pattern of erosion on the PET surface. The corona discharge treatment erodes the surface and therefore modifies the surface morphology. The roughness of the PET surface increases in the impact point of the corona discharge on the PET surface. An increase in the wettability of PET was also observed after corona discharge treatment at atmospheric pressure

    La ley segĂșn PlatĂłn

    Get PDF

    On the gravitational instability of a dissipative medium

    Get PDF
    This paper shows that the ordinary Jeans wave number can be obtained as a limiting case of a more general approach that includes dissipative effects. Corrections to the Jeans critical mass associated to viscosity are established. Some possible implications of the results are finally discussed.Comment: 5 pages, RevTe

    The Simple Non-degenerate Relativistic Gas: Statistical Properties and Brownian Motion

    Full text link
    This paper shows a novel calculation of the mean square displacement of a classical Brownian particle in a relativistic thermal bath. The result is compared with the expressions obtained by other authors. Also, the thermodynamic properties of a non-degenerate simple relativistic gas are reviewed in terms of a treatment performed in velocity space.Comment: 6 pages, 2 figure

    The velocity function in the local environment from LCDM and LWDM constrained simulations

    Full text link
    Using constrained simulations of the local Universe for generic cold dark matter and for 1keV warm dark matter, we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function within 20 Mpc/h of the Local Group is ~2 times larger than the universal mass function in the 10^9-10^13 M_odot/h mass range. Imposing the field of view of the on-going HI blind survey ALFALFA in our simulations, we predict that the velocity function in the Virgo-direction region exceeds the universal velocity function by a factor of 3. Furthermore, employing a scheme to translate the halo velocity function into a galaxy velocity function, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the velocity function in the 80-300 km/s velocity range, having a value ~10 times larger than the universal velocity function in the Virgo-direction region. In the low velocity regime, 35-80 km/s, the warm dark matter simulation reproduces the observed flattening of the velocity function. On the contrary, the simulation with cold dark matter predicts a steep rise in the velocity function towards lower velocities; for V_max=35 km/s, it forecasts ~10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, our results indicate a potential problem for the cold dark matter paradigm or for the conventional assumptions about energetic feedback in dwarf galaxies.Comment: 24 pages, 14 figures, 1 table, accepted for publication in Ap
    • 

    corecore