1,047 research outputs found
Spin relaxation in a complex environment
We report the study of a model of a two-level system interacting in a
non-diagonal way with a complex environment described by Gaussian orthogonal
random matrices (GORM). The effect of the interaction on the total spectrum and
its consequences on the dynamics of the two-level system are analyzed. We show
the existence of a critical value of the interaction, depending on the mean
level spacing of the environment, above which the dynamics is self-averaging
and closely obey a master equation for the time evolution of the observables of
the two-level system. Analytic results are also obtained in the strong coupling
regimes. We finally study the equilibrium values of the two-level system
population and show under which condition it thermalizes to the environment
temperature.Comment: 45 pages, 49 figure
Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice
Background and aims Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. Methods ApoE−/− mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. Results Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. Conclusions Major orthopedic surgery in ApoE−/− mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated. © 2016 Elsevier Ireland Lt
Strange nucleon form factors in the perturbative chiral quark model
We apply the perturbative chiral quark model at one loop to calculate the
strange form factors of the nucleon. A detailed numerical analysis of the
strange magnetic moments and radii of the nucleon, and also the momentum
dependence of the form factors is presented.Comment: 18 pages, 6 figure
Interacting Agegraphic Dark Energy
A new dark energy model, named "agegraphic dark energy", has been proposed
recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which
arises from quantum mechanics together with general relativity. In this note,
we extend the original agegraphic dark energy model by including the
interaction between agegraphic dark energy and pressureless (dark) matter. In
the interacting agegraphic dark energy model, there are many interesting
features different from the original agegraphic dark energy model and
holographic dark energy model. The similarity and difference between agegraphic
dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by
Eur. Phys. J. C; v4: published versio
Quantum jumps induced by the center-of-mass motion of a trapped atom
We theoretically study the occurrence of quantum jumps in the resonance
fluorescence of a trapped atom. Here, the atom is laser cooled in a
configuration of level such that the occurrence of a quantum jump is associated
to a change of the vibrational center-of-mass motion by one phonon. The
statistics of the occurrence of the dark fluorescence period is studied as a
function of the physical parameters and the corresponding features in the
spectrum of resonance fluorescence are identified. We discuss the information
which can be extracted on the atomic motion from the observation of a quantum
jump in the considered setup
Magnetic Field Measurement with Ground State Alignment
Observational studies of magnetic fields are crucial. We introduce a process
"ground state alignment" as a new way to determine the magnetic field direction
in diffuse medium. The alignment is due to anisotropic radiation impinging on
the atom/ion. The consequence of the process is the polarization of spectral
lines resulting from scattering and absorption from aligned atomic/ionic
species with fine or hyperfine structure. The magnetic field induces precession
and realign the atom/ion and therefore the polarization of the emitted or
absorbed radiation reflects the direction of the magnetic field. The atoms get
aligned at their low levels and, as the life-time of the atoms/ions we deal
with is long, the alignment induced by anisotropic radiation is susceptible to
extremely weak magnetic fields (G). In fact,
the effects of atomic/ionic alignment were studied in the laboratory decades
ago, mostly in relation to the maser research. Recently, the atomic effect has
been already detected in observations from circumstellar medium and this is a
harbinger of future extensive magnetic field studies. A unique feature of the
atomic realignment is that they can reveal the 3D orientation of magnetic
field. In this article, we shall review the basic physical processes involved
in atomic realignment. We shall also discuss its applications to
interplanetary, circumstellar and interstellar magnetic fields. In addition,
our research reveals that the polarization of the radiation arising from the
transitions between fine and hyperfine states of the ground level can provide a
unique diagnostics of magnetic fields in the Epoch of Reionization.Comment: 30 pages, 12 figures, chapter in Lecture Notes in Physics "Magnetic
Fields in Diffuse Media". arXiv admin note: substantial text overlap with
arXiv:1203.557
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
Talented suppliers? Strategic change and innovation in the UK aerospace industry
The 1990s marked the start of extensive re-structuring in the aerospace industry throughout the world. While the ensuing consolidation among prime contractors has been widely researched, the changes affecting the aerospace supply chain have received less attention. This study focuses on the re-structuring taking place within the supply chain of the UK aerospace industry. The findings point to extensive re-structuring. Unlike most earlier studies the lean supply model was found to be a powerful influence, with suppliers moving away from subcontractor status and instead taking on the mantle of ‘talented’ suppliers. While some of the implications of lean supply, in terms of the dynamics of innovation, were not apparent, there were modest signs of increased process innovation on the part of some suppliers
Top Squarks and Bottom Squarks in the MSSM with Complex Parameters
We present a phenomenological study of top squarks (~t_1,2) and bottom
squarks (~b_1,2) in the Minimal Supersymmetric Standard Model (MSSM) with
complex parameters A_t, A_b, \mu and M_1. In particular we focus on the CP
phase dependence of the branching ratios of (~t_1,2) and (~b_1,2) decays. We
give the formulae of the two-body decay widths and present numerical results.
We find that the effect of the phases on the (~t_1,2) and (~b_1,2) decays can
be quite significant in a large region of the MSSM parameter space. This could
have important implications for (~t_1,2) and (~b_1,2) searches and the MSSM
parameter determination in future collider experiments. We have also estimated
the accuracy expected in the determination of the parameters of ~t_i and ~b_i
by a global fit of the measured masses, decay branching ratios and production
cross sections at e^+ e^- linear colliders with polarized beams. Analysing two
scenarios, we find that the fundamental parameters apart from A_t and A_b can
be determined with errors of 1% to 2%, assuming an integrated luminosity of 1
ab^-1 and a sufficiently large c.m.s. energy to produce also the heavier ~t_2
and ~b_2 states. The parameter A_t can be determined with an error of 2 - 3%,
whereas the error on A_b is likely to be of the order of 50%.Comment: 31 pages, 8 figures, comments and references added, conclusions
unchanged; version to appear in Phys. Rev.
- …
