1,539 research outputs found
On the structure of the scalar mesons and
We investigate the structure of the scalar mesons and
within realistic meson-exchange models of the and
interactions. Starting from a modified version of the J\"ulich model for
scattering we perform an analysis of the pole structure of the
resulting scattering amplitude and find, in contrast to existing models, a
somewhat large mass for the ( MeV,
MeV). It is shown that our model provides a description of
data comparable in quality with those of
alternative models. Furthermore, the formalism developed for the
system is consistently extended to the interaction leading to a
description of the as a dynamically generated threshold effect
(which is therefore neither a conventional state nor a
bound state). Exploring the corresponding pole position the
is found to be rather broad ( MeV,
MeV). The experimentally observed smaller width results from the influence of
the nearby threshold on this pole.Comment: 25 pages, 15 Postscript figure
Another look at scattering in the scalar channel
We set up a general framework to describe scattering below 1 GeV
based on chiral low-energy expansion with possible spin-0 and 1 resonances.
Partial wave amplitudes are obtained with the method, which satisfy
unitarity, analyticity and approximate crossing symmetry. Comparison with the
phase shift data in the J=0 channel favors a scalar resonance near the
mass.Comment: 17 pages, 5 figures, REVTe
Relativistic Effects in the Scalar Meson Dynamics
A separable potential formalism is used to describe the and
interactions in the scalar-isoscalar states in the energy range
from the threshold up to 1.4 GeV. Introduction of relativistic
propagators into a system of Lippmann-Schwinger equations leads to a very good
description of the data ( per one degree of freedom). Three
poles are found in this energy region: fo(500) ( MeV,
MeV), fo(975) ( MeV, MeV) and
fo(1400) ( MeV, MeV). The fo(975) state can be
interpreted as a bound state. The fo(500) state may be
associated with the often postulated very broad scalar resonance under the
threshold (sometimes called or meson). The
scattering lengths in the and channels have also been
obtained. The relativistic approach provides qualitatively new results (e.g.
the appearance of the fo(500)) in comparison with previously used
nonrelativistic approach.Comment: 30 pages in LaTeX + 5 figures available on request. Preprint Orsay No
IPNO/TH 93-3
Laser cooling of a diatomic molecule
It has been roughly three decades since laser cooling techniques produced
ultracold atoms, leading to rapid advances in a vast array of fields.
Unfortunately laser cooling has not yet been extended to molecules because of
their complex internal structure. However, this complexity makes molecules
potentially useful for many applications. For example, heteronuclear molecules
possess permanent electric dipole moments which lead to long-range, tunable,
anisotropic dipole-dipole interactions. The combination of the dipole-dipole
interaction and the precise control over molecular degrees of freedom possible
at ultracold temperatures make ultracold molecules attractive candidates for
use in quantum simulation of condensed matter systems and quantum computation.
Also ultracold molecules may provide unique opportunities for studying chemical
dynamics and for tests of fundamental symmetries. Here we experimentally
demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using
an optical cycling scheme requiring only three lasers, we have observed both
Sisyphus and Doppler cooling forces which have substantially reduced the
transverse temperature of a SrF molecular beam. Currently the only technique
for producing ultracold molecules is by binding together ultracold alkali atoms
through Feshbach resonance or photoassociation. By contrast, different proposed
applications for ultracold molecules require a variety of molecular
energy-level structures. Our method provides a new route to ultracold
temperatures for molecules. In particular it bridges the gap between ultracold
temperatures and the ~1 K temperatures attainable with directly cooled
molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams).
Ultimately our technique should enable the production of large samples of
molecules at ultracold temperatures for species that are chemically distinct
from bialkalis.Comment: 10 pages, 7 figure
Atom capture by nanotube and scaling anomaly
The existence of bound state of the polarizable neutral atom in the inverse
square potential created by the electric field of single walled charged carbon
nanotube (SWNT) is shown to be theoretically possible. The consideration of
inequivalent boundary conditions due to self-adjoint extensions lead to this
nontrivial bound state solution. It is also shown that the scaling anomaly is
responsible for the existence of bound state. Binding of the polarizable atoms
in the coupling constant interval \eta^2\in[0,1) may be responsible for the
smearing of the edge of steps in quantized conductance, which has not been
considered so far in literature.Comment: Accepted in Int.J.Theor.Phy
Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding center motion
We derive a product rule for gauge invariant Weyl symbols which provides a
generalization of the well-known Moyal formula to the case of non-vanishing
electromagnetic fields. Applying our result to the guiding center problem we
expand the guiding center Hamiltonian into an asymptotic power series with
respect to both Planck's constant and an adiabaticity parameter already
present in the classical theory. This expansion is used to determine the
influence of quantum mechanical effects on guiding center motion.Comment: 24 pages, RevTeX, no figures; shortened version will be published in
J.Phys.
Human development of the ability to learn from bad news
Humans show a natural tendency to discount bad news while incorporating good news into beliefs (the “good news–bad news effect”), an effect that may help explain seemingly irrational risk taking. Understanding how this bias develops with age is important because adolescents are prone to engage in risky behavior; thus, educating them about danger is crucial. We reveal a striking valence-dependent asymmetry in how belief updating develops with age. In the ages tested (9–26 y), younger age was associated with inaccurate updating of beliefs in response to undesirable information regarding vulnerability. In contrast, the ability to update beliefs accurately in response to desirable information remained relatively stable with age. This asymmetry was mediated by adequate computational use of positive but not negative estimation errors to alter beliefs. The results are important for understanding how belief formation develops and might help explain why adolescents do not respond adequately to warnings
Search for Exclusive Charmless Hadronic B Decays
We have searched for two-body charmless hadronic decays of mesons. Final
states include , , and with both charged and neutral kaons
and pions; , , and ; and , , and
. The data used in this analysis consist of 2.6~million
~pairs produced at the taken with the CLEO-II detector
at the Cornell Electron Storage Ring (CESR). We measure the branching fraction
of the sum of and to be
. In addition, we place upper
limits on individual branching fractions in the range from to
.Comment: 33 page LATEX file, uses REVTEX and psfig, 14 figures in a separate
uuencoded postscript file, postscript version also available through
http://w4.lns.cornell.edu/public/CLN
Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ~7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity
N/D Description of Two Meson Amplitudes and Chiral Symmetry
The most general structure of an elastic partial wave amplitude when the
unphysical cuts are neglected is deduced in terms of the N/D method. This
result is then matched to lowest order, , Chiral
Perturbation Theory(PT) and to the exchange (consistent with chiral
symmetry) of resonances in the s-channel. The extension of the method to
coupled channels is also given. Making use of the former formalism, the
and (I=1/2) P-wave scattering amplitudes are described without
free parameters when taking into account relations coming from the 1/
expansion and unitarity. Next, the scalar sector is studied and good agreement
with experiment up to GeV is found. It is observed that the
, and resonances are meson-meson states
originating from the unitarization of the PT
amplitudes. On the other hand, the is a combination of a strong
S-wave meson-meson unitarity effect and of a preexisting singlet resonance with
a mass around 1 GeV. We have also studied the size of the contributions of the
unphysical cuts to the (I=0) and (I=1/2) elastic S-wave
amplitudes from PT and the exchange of resonances in crossed channels up
to MeV. The loops are calculated as in PT at next
to leading order. We find a small correction from the unphysical cuts to our
calculated partial waves.Comment: 32 pages, LaTeX, 9 Figures. Estimations of the unphysical cuts have
been done in a new section. Final versio
- …