69 research outputs found

    ExO: An Ontology for Exposure Science

    Get PDF
    An ontology is a formal representation of knowledge within a domain and typically consists of classes, the properties of those classes, and the relationships between them. Ontologies are critically important for specifying data of interest in a consistent manner, thereby enabling data aggregation, analysis and exchange. An exposure ontology, consistent with those being used in toxicology and other health sciences, is required to formally represent exposure concepts, the relationships between these concepts and most important, the relationships between exposure, susceptibility, and toxicology information. A successful exposure ontology must facilitate the semantic retrieval of exposure data in the context of environmental health science, medical surveillance, disease control, health tracking, risk assessment, and other public health and environmental science endeavors. To address this need, an Exposure Ontology, ExO, was designed and a prototype developed to provide the foundation for exposure data centralization and integration. The root classes forming the basis for the ontology are 'exposure event’ ‘exposure stressor', 'exposure receptor', and 'exposure outcome'. Although the initial development of ExO was focused on human exposure to chemicals, the ultimate intent is to provide domains that can be extended to address exposures to the full suite of environmental stressors

    Providing the Missing Link: the Exposure Science Ontology ExO

    Get PDF
    Environmental health information resources lack exposure data required to translate molecular insights, elucidate environmental contributions to diseases, and assess human health and ecological risks. We report development of an Exposure Ontology, ExO, designed to address this information gap by facilitating centralization and integration of exposure data. Major concepts were defined and the ontology drafted and evaluated by a working group of exposure scientists and other ontology and database experts. The resulting major concepts forming the basis for the ontology are exposure stressor , exposure receptor , exposure event , and exposure outcome . Although design of the first version of ExO focused on human exposure to chemicals, we anticipate expansion by the scientific community to address exposures of human and ecological receptors to the full suite of environmental stressors. Like other widely used ontologies, ExO is intended to link exposure science and diverse environmental health disciplines including toxicology, epidemiology, disease surveillance, and epigenetics

    Using Biomarkers to Inform Cumulative Risk Assessment

    Get PDF
    BACKGROUND: Biomarkers are considered the method of choice for determining exposure to environmental contaminants and relating such exposures to health outcomes. However, the association between many biomarkers and outcome is not direct because of variability in sensitivity and susceptibility in the individual. OBJECTIVES: We explore the relationship between environmental exposures and health outcomes as mitigated by differential susceptibility in individuals or populations and address the question “Can biomarkers enable us to understand and quantify better the population burden of disease and health effects attributable to environmental exposures?” METHODS: We use a case–study approach to develop the thesis that biomarkers offer a pathway to disaggregation of health effects into specific, if multiple, risk factors. We offer the point of view that a series or array of biomarkers, including biomarkers of exposure, biomarkers of susceptibility, and biomarkers of effect, used in concert offer the best means by which to effect this disaggregation. We commence our discussion by developing the characteristics of an ideal biomarker, then give some examples of commonly used biomarkers to show the strengths and weaknesses of current usage. We follow this by more detailed case-study assessment outlining the state-of-the-science in specific cases. We complete our work with recommendations regarding the future use of biomarkers and areas for continued development. CONCLUSIONS: The case studies provide examples of when and how biomarkers can be used to infer the source and magnitude of exposure among a set of competing sources and pathways. The answer to this question is chemical specific and relates to how well the biomarker matches the characteristics of an “ideal” biomarker–in particular ease of collection and persistence. The use of biomarkers in combination provides a better opportunity to disaggregate both source and pathway contributions

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    Assessing Human Exposure to SVOCs in Materials, Products, and Articles : A Modular Mechanistic Framework

    Get PDF
    A critical review of the current state of knowledge of chemical emissions from indoor sources, partitioning among indoor compartments, and the ensuing indoor exposure leads to a proposal for a modular mechanistic framework for predicting human exposure to semivolatile organic compounds (SVOCs). Mechanistically consistent source emission categories include solid, soft, frequent contact, applied, sprayed, and high temperature sources. Environmental compartments are the gas phase, airborne particles, settled dust, indoor surfaces, and clothing. Identified research needs are the development of dynamic emission models for several of the source emission categories and of estimation strategies for critical model parameters. The modular structure of the framework facilitates subsequent inclusion of new knowledge, other chemical classes of indoor pollutants, and additional mechanistic processes relevant to human exposure indoors. The framework may serve as the foundation for developing an open-source community model to better support collaborative research and improve access for application by stakeholders. Combining exposure estimates derived using this framework with toxicity data for different end points and toxicokinetic mechanisms will accelerate chemical risk prioritization, advance effective chemical management decisions, and protect public health.Peer reviewe

    Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways

    Get PDF
    The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) “toxicity pathways” (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair

    Evaluation of genetic susceptibility to childhood allergy and asthma in an African American urban population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify high risk groups are variable and replication of genetic associations in African Americans is warranted.</p> <p>Methods</p> <p>We evaluated 41 single nucleotide polymorphisms (SNP) and a deletion corresponding to 11 genes demonstrating association with asthma in the literature, for association with asthma, atopy, testing positive for food allergens, eosinophilia, and total serum IgE among 141 African American children living in Detroit, Michigan. Independent SNP and haplotype associations were investigated for association with each trait, and subsequently assessed in concert using a genetic risk score (GRS).</p> <p>Results</p> <p>Statistically significant associations with asthma were observed for SNPs in <it>GSTM1, MS4A2</it>, and <it>GSTP1 </it>genes, after correction for multiple testing. Chromosome 11 haplotype CTACGAGGCC (corresponding to <it>MS4A2 </it>rs574700, rs1441586, rs556917, rs502581, rs502419 and <it>GSTP1 </it>rs6591256, rs17593068, rs1695, rs1871042, rs947895) was associated with a nearly five-fold increase in the odds of asthma (Odds Ratio (OR) = 4.8, <it>p </it>= 0.007). The GRS was significantly associated with a higher odds of asthma (OR = 1.61, 95% Confidence Interval = 1.21, 2.13; <it>p </it>= 0.001).</p> <p>Conclusions</p> <p>Variation in genes associated with asthma in predominantly non-African ethnic groups contributed to increased odds of asthma in this African American study population. Evaluating all significant variants in concert helped to identify the highest risk subset of this group.</p

    The Effect of Nordic Hamstring Strength Training on Muscle Architecture, Stiffness, and Strength

    Get PDF
    Purpose: Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Methods: Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. Results: The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm3, p\u3c0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm2, p=0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. Conclusions: The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is therefore warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk
    corecore