5,652 research outputs found

    Dynamics of a nano-scale rotor driven by single-electron tunneling

    Full text link
    We investigate theoretically the dynamics and the charge transport properties of a rod-shaped nano-scale rotor, which is driven by a similar mechanism as the nanomechanical single-electron transistor (NEMSET). We show that a static electric potential gradient can lead to self-excitation of oscillatory or continuous rotational motion. The relevant parameters of the device are identified and the dependence of the dynamics on these parameters is studied. We further discuss how the dynamics is related to the measured current through the device. Notably, in the oscillatory regime, we find a negative differential conductance. The current-voltage characteristics can be used to infer details of the surrounding environment which is responsible for damping

    Lowest Landau-level description of a Bose-Einstein condensate in a rapidly rotating anisotropic trap

    Full text link
    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional trap can be described with the lowest Landau-level set of states. In this case, the condensate wave function psi(x,y) is a Gaussian function of r^2 = x^2 + y^2, multiplied by an analytic function P(z) of the single complex variable z= x+ i y; the zeros of P(z) denote the positions of the vortices. Here, a similar description is used for a rapidly rotating anisotropic two-dimensional trap with arbitrary anisotropy (omega_x/omega_y le 1). The corresponding condensate wave function psi(x,y) has the form of a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function P(zeta), where zeta is proportional to x + i beta_- y and 0 le beta_- le 1 is a real parameter that depends on the trap anisotropy and the rotation frequency. The zeros of P(zeta) again fix the locations of the vortices. Within the set of lowest Landau-level states at zero temperature, an anisotropic parabolic density profile provides an absolute minimum for the energy, with the vortex density decreasing slowly and anisotropically away from the trap center.Comment: 13 pages, 1 figur

    Few-Qubit lasing in circuit QED

    Full text link
    Motivated by recent experiments, which demonstrated lasing and cooling of the electromagnetic modes in a resonator coupled to a superconducting qubit, we describe the specific mechanisms creating the population inversion, and we study the spectral properties of these systems in the lasing state. Different levels of the theoretical description, i.e., the semi-classical and the semi-quantum approximation, as well as an analysis based on the full Liouville equation are compared. We extend the usual quantum optics description to account for strong qubit-resonator coupling and include the effects of low-frequency noise. Beyond the lasing transition we find for a single- or few-qubit system the phase diffusion strength to grow with the coupling strength, which in turn deteriorates the lasing state.Comment: Prepared for the proceedings of the Nobel Symposium 2009, Qubits for future quantum computers, May 2009 in Goeteborg, Sweden. Published versio

    Lagrangian and Hamiltonian two-scale reduction

    Get PDF
    Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave-length motion or describe the macroscopic modulation of an oscillatory microstructure.Comment: 40 page

    Using VO tools to investigate distant radio starbursts hosting obscured AGN in the HDF(N) region

    Full text link
    A 10-arcmin field around the HDF(N) contains 92 radio sources >40 uJy, resolved by MERLIN+VLA at 0".2-2".0 resolution. 55 have Chandra X-ray counterparts including 18 with a hard X-ray photon index and high luminosity characteristic of a type-II (obscured) AGN. >70% of the radio sources have been classified as starbursts or AGN using radio morphologies, spectral indices and comparisons with optical appearance and MIR emission. Starbursts outnumber radio AGN 3:1. This study extends the VO methods previously used to identify X-ray-selected obscured type-II AGN to investigate whether very luminous radio and X-ray emission originates from different phenomena in the same galaxy. The high-redshift starbursts have typical sizes of 5--10 kpc and star formation rates of ~1000 Msun/yr. There is no correlation between radio and X-ray luminosities nor spectral indices at z>~1.3. ~70% of both the radio-selected AGN and the starburst samples were detected by Chandra. The X-ray luminosity indicates the presence of an AGN in at least half of the 45 cross-matched radio starbursts, of which 11 are type-II AGN including 7 at z>1.5. This distribution overlaps closely with the X-ray detected radio sources which were also detected by SCUBA. Stacked 1.4-GHz emission at the positions of radio-faint X-ray sources is correlated with X-ray hardness. Most extended radio starbursts at z>1.3 host X-ray selected obscured AGN. Radio emission from most of these ultra-luminous objects is dominated by star formation but it contributes less than 1/3 of their X-ray luminosity. Our results support the inferences from SCUBA and IR data, that at z>1.5, star formation is an order of magnitude more extended and more copious, it is closely linked to AGN activity and it is triggered differently, compared with star formation at lower redshifts.Comment: 24 pages, 12 figures, uses graphicx, rotating, natbib, supertabular packages and aa.cls. Accepted for publication in A&
    • …
    corecore