45 research outputs found
Using internet enabled mobile devices and social networking technologies to promote exercise as an intervention for young first episode psychosis patients
<p>Abstract</p> <p>Background</p> <p>Young people with first episode psychosis are at an increased risk for a range of poor health outcomes. In contrast to the growing body of evidence that suggests that exercise therapy may benefit the physical and mental health of people diagnosed with schizophrenia, there are no studies to date that have sought to extend the use of exercise therapy among patients with first episode psychosis. The aim of the study is to test the feasibility and acceptability of an exercise program that will be delivered via internet enabled mobile devices and social networking technologies among young people with first episode psychosis.</p> <p>Methods/Design</p> <p>This study is a qualitative pilot study being conducted at Orygen Youth Health Research Centre in Melbourne, Australia. Participants are young people aged 15-24 who are receiving clinical care at a specialist first episode psychosis treatment centre. Participants will also comprise young people from the general population. The exercise intervention is a 9-week running program, designed to gradually build a person's level of fitness to be able to run 5 kilometres (3 miles) towards the end of the program. The program will be delivered via an internet enabled mobile device. Participants will be asked to post messages about their running experiences on the social networking website, and will also be asked to attend three face-to-face interviews.</p> <p>Discussion</p> <p>This paper describes the development of a qualitative study to pilot a running program coupled with the use of internet enabled mobile devices among young people with first episode psychosis. If the program is found to be feasible and acceptable to patients, it is hoped that further rigorous evaluations will ultimately lead to the introduction of exercise therapy as part of an evidence-based, multidisciplinary approach in routine clinical care.</p
Reduced auditory steady state responses in autism spectrum disorder
Background Auditory steady state responses (ASSRs) are elicited by clicktrains or amplitude-modulated tones, which entrain auditory cortex at their specific modulation rate. Previous research has reported reductions in ASSRs at 40 Hz for autism spectrum disorder (ASD) participants and first-degree relatives of people diagnosed with ASD (Mol Autism. 2011;2:11, Biol Psychiatry. 2007;62:192–197). Methods Using a 1.5 s-long auditory clicktrain stimulus, designed to elicit an ASSR at 40 Hz, this study attempted to replicate and extend these findings. Magnetencephalography (MEG) data were collected from 18 adolescent ASD participants and 18 typically developing controls. Results The ASSR localised to bilateral primary auditory regions. Regions of interest were thus defined in left and right primary auditory cortex (A1). While the transient gamma-band response (tGBR) from 0-0.1 s following presentation of the clicktrain stimulus was not different between groups, for either left or right A1, the ASD group had reduced oscillatory power at 40 Hz from 0.5 to 1.5 s post-stimulus onset, for both left and right A1. Additionally, the ASD group had reduced inter-trial coherence (phase consistency over trials) at 40 Hz from 0.64-0.82 s for right A1 and 1.04-1.22 s for left A1. Limitations In this study, we did not conduct a clinical autism assessment (e.g. the ADOS), and therefore, it remains unclear whether ASSR power and/or ITC are associated with the clinical symptoms of ASD. Conclusion Overall, our results support a specific reduction in ASSR oscillatory power and inter-trial coherence in ASD, rather than a generalised deficit in gamma-band responses. We argue that this could reflect a developmentally relevant reduction in non-linear neural processing
Sub-Saharan Africa's Mothers, Newborns, and Children: Where and Why Do They Die?
In the first article in a series on maternal, newborn, and child health in sub-Saharan Africa, Joy Lawn and colleagues outline where and why deaths among mothers and children occur and what known interventions can be employed to prevent these deaths
Comprehensive Gene-Expression Survey Identifies Wif1 as a Modulator of Cardiomyocyte Differentiation
During chicken cardiac development the proepicardium (PE) forms the epicardium (Epi), which contributes to several non-myocardial lineages within the heart. In contrast to Epi-explant cultures, PE explants can differentiate into a cardiomyocyte phenotype. By temporal microarray expression profiles of PE-explant cultures and maturing Epi cells, we identified genes specifically associated with differentiation towards either of these lineages and genes that are associated with the Epi-lineage restriction. We found a central role for Wnt signaling in the determination of the different cell lineages. Immunofluorescent staining after recombinant-protein incubation in PE-explant cultures indicated that the early upregulated Wnt inhibitory factor-1 (Wif1), stimulates cardiomyocyte differentiation in a similar manner as Wnt stimulation. Concordingly, in the mouse pluripotent embryogenic carcinoma cell line p19cl6, early and late Wif1 exposure enhances and attenuates differentiation, respectively. In ovo exposure of the HH12 chicken embryonic heart to Wif1 increases the Tbx18-positive cardiac progenitor pool. These data indicate that Wif1 enhances cardiomyogenesis
The genomic basis of parasitism in the Strongyloides clade of nematodes.
Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism