514 research outputs found

    The linear polarization of lunar thermal emission at 3.1 mm wavelength

    Get PDF
    Several observations of the distribution of linearly polarized lunar thermal emission were made at a wavelength of 3.1 mm with 4.88 m parabolic reflector from February to March 1971. A shadow corrected rough surface thermal emission model was least squares fitted to the data. Results indicate an effective lunar dielectric constant of 1.34 + or -.08 with surface roughness characterized by a standard deviation of surface slopes of 18 deg + or - 2 deg. A comparison of these results with previously published values at other wavelengths suggests that the effective lunar dielectric constant decreases with decreasing wavelength

    Pointing of the 16 foot antenna

    Get PDF
    Comprehensive pointing theory for 16 ft antenna including servo encoder reading

    The use of Gaussian functions in radio astronomy source measurements

    Get PDF
    Gaussian distribution analysis of radio source observatio

    Planetary observations at millimeter wavelengths

    Get PDF
    Observations of the Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn were made at 3.1 mm and 8.6 mm wavelengths with a 16-foot radio telescope between March and August, 1971. Absolute brightness temperature data are given. All errors are one standard deviation and include uncertainties in antenna gain calibration. The solar and lunar temperatures are in excellent agreement with published observations. The planetary measurements at 3.1 mm are consistently higher than previous results. The implications of higher temperatures with respect to existing atmospheric and surface models are discussed

    An improved crystal structure of C-phycoerythrin from the marine cyanobacterium Phormidium sp. A09DM

    Get PDF
    C-Phycoerythrin (PE) from Phormidium sp. A09DM has been crystallized using different conditions and its structure determined to atomic resolution (1.14 Å). In order for the pigment present, phycoerythrobilin (PEB), to function as an efficient light-harvesting molecule it must be held rigidly (Kupka and Scheer in Biochim Biophys Acta 1777:94–103, 2008) and, moreover, the different PEB molecules in PE must be arranged, relative to each other, so as to promote efficient energy transfer between them. This improved structure has allowed us to define in great detail the structure of the PEBs and their binding sites. These precise structural details will facilitate theoretical calculations of each PEB’s spectroscopic properties. It was possible, however, to suggest a model for which chromophores contribute to the different regions of absorption spectrum and propose a tentative scheme for energy transfer. We show that some subtle differences in one of these PEB binding sites in two of the 12 subunits are caused by crystal contacts between neighboring hexamers in the crystal lattice. This explains some of the differences seen in previous lower resolution structures determined at two different pH values (Kumar et al. in Photosyn Res 129:17–28, 2016)

    Structure of protease-cleaved escherichia coliα-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Get PDF
    Bacterial -2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli -2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli -2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli -2-macroglobulin and human -2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group

    Structures and functions of carotenoids bound to reaction centers from purple photosynthetic bacteria

    Get PDF
    The photoprotective function of 15,15'-cis-carotenoids bound to the photosynthetic reaction centers (RCs) of purple bacteria has been studied using carotenoids reconstituted into carotenoidless RCs from Rhodobacter sphaeroides strain R26.1. The triplet-energy level of the carotenoid has been proposed to affect the quenching of the triplet state of special-pair bacteriochlorophyll (P). This was investigated using microsecond flash photolysis to detect the carotenoid triplets as a function of the number of conjugated double bonds, n. The carotenoid triplet signals were extracted by using singular-value decomposition (SVD) of the huge matrices data, and were confirmed for those having n = 8 to 11. This interpretation assumes that the reconstituted carotenoids occupy the same binding site in the RC. We have been able to confirm this assumption using X-ray crystallography to determine the structures of carotenoidless, wild-type carotenoid-containing, and 3,4-dihydro-spheroidene-reconstituted RCs. The X-ray study also emphasized the importance of the methoxy group of the carotenoids for binding to the RCs. Electroabsorption (Stark) spectroscopy was used to investigate the effect of the carotenoid on the electrostatic field around P. This electrostatic field changed by 10 % in the presence of the carotenoid
    • …
    corecore