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ABSTRACT

Several observations of the distribution of linearly polarized

lunar thermal emission were made at a wavelength of 3. 1 mm with

The University of Texas 4. 88 m parabolic reflector from February

to March 1971. A shadow corrected rough surface thermal emission

model was least squares fitted to the data. Results indicate an effec-

tive lunar dielectric constant of 1. 34±. 08 with surface roughness char-

acterized by a standard deviation of surface slopes of 18"±2°. A

comparison of these results with previously published values at other

wavelengths suggests that the effective lunar dielectric constant de-

creases with decreasing wavelength.
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I. INTRODUCTION

Measurements of the linear polarization of lunar thermal emission

were conducted at a wavelength of 3. 1 mm with the high resolution

(0. 045° HPBW) 4. 88 meter parabolic reflector at The University of

Texas Millimeter Wave Observatory. The best overall least squares

fit to the entire data implies an effective lunar dielectric constant of

1. 34±. 08, and a standard deviation for lunar slopes of 18°±2°. A com-

parison of these results with those of previous studies indicates that

the effective lunar dielectric constant decreases with decreasing wave-

length of observation. Indications are the lunar surface is rough on a

scale of a few millimeters. There is a need to accurately measure the

linear polarization of lunar thermal emission at several wavelengths to

clearly define a wavelength dependence of the effective dielectric con-

stant.

At optical wavelengths lunar radiation is primarily reflected solar

radiation, while at radio wavelengths lunar radiation is due to thermal

emission. The subsurface lunar radiation strikes the surface and is

polarized, as described by Fresnel's equations, into two orthogonal

components. This emission process is further modified by the pre-

sence of surface roughness and shadowing.

It is possible to observe the distribution of the percent polarization

across the lunar disk with high resolution (narrow beamwidth) antennas.



From this distribution, values for the effective dielectric constant and

surface slopes can be obtained.

Troitsky (1954) first postulated that e, the relative lunar di-

electric constant, could be obtained from the distribution of excess

polarization across the lunar disk. He neglected surface roughness

as unimportant in practice.

[2]
Soboleva (1962) was one of the first experimenters to observe

the excess lunar polarization. She found e = 1. 65 at a wavelength \ of

3.2 cm, with a rough surface model characterized by a uniform dis-

tribution of surface normals in a 20° cone.

f 3 lBaars, jet al. L J (1963) found e = 1. 5 at X = 2. 07 cm with a 15°

cone rough model. They were the first experimenters to suggest that

e decreases with decreasing wavelength of observation.

F41
Heiles and DrakeL J (1963) found e = 2. 1±0. 3 at X = 21 cm and

they concluded that a smooth model gave the best fit to their experi-

mental data. This suggested that the Moon was relatively smooth on

a 21 cm scale.

[5]
Golnev and Soboleva (1964) found e = 2. 0 (estimated from their

published data) at X = 6 . 3 cm with a 20° cone rough model.

Moran (1965) at X = 8. 5 mm found e = 1. 7 with roughness char-

acterized by tilted facets with a 15° standard deviation for his normal

probability density of lunar slopes.



Hagfors (1965) tried to reconcile the large values for the di-

electric constants obtained by radar techniques with the smaller di-

electric constants obtained by lunar emission measurements. He also

r si
proposed a two layered lunar dielectric surface to account for the

wavelength dependence of the effective dielectric constant.

F9l
LosovskiiL J (1966) found e = 1.5±0.2 with roughness of 15°±10°

at X = 8 mm. He was the first worker to approximately account for

intermediate scale surface roughness by correcting his model using

radar results as a guide. This correction increased his effective

dielectric constant to 2. 3±. 5.

Davies and Gardner (1966) measured e = 2.2±0. 1 at X = 6 cm,

e = 2. 25±0. 05 at X = 11 cm, and e = 2. 5±0. 15 at X = 21 cm. Rough-

ness was characterized by a 8°-l6° scatter of slopes.

Clegg'and Carter J (1970) measured e = 3. 0±0. 3 at X = 1.2 mm,

the smallest wavelength of observation to date.

This study was motivated by the desire to obtain the dielectric

constant and surface roughness of the Moon at the shorter millimeter

wavelengths. Shadowing due to surface roughness has been crudely

approximated or completely neglected in the past. This study takes

shadowing into account by employing a probabilistic shadowing function.

In Chapter II the reader is introduced to such radio astronomy con-

cepts as polarization, beam smoothing, receiver noise and atmospheric

attenuation.



In Chapter m the refraction of a plane wave incident on a plane

dielectric boundary is described. A smooth lunar thermal emission

model is then derived.

In Chapter IV the smooth model is modified to account for large

scale surface roughness. The important effect of shadowing is ex-

amined.

In Chapter V the antenna response to the rough model is derived.

Beam ellipiticity is experimentally verified.

In Chapter VI the equipment used in the present study and the data

taking procedure are briefly described.

In Chapter VII the data analysis scheme is explained. Appro-

priate numerical techniques are discussed.

In Chapter VIII the results and conclusions of this study are stated.

All possible sources of error are summarized. The experimental re-

sults are compared with those of previous studies.



II. RADIO ASTRONOMY CONCEPTS

In this chapter several radio astronomy concepts are presented

in order to form a basis for understanding material in later chapters.

Many different types of radio telescopes are in existence today,

however for brevity, only parabolic reflector antennas will be con-

sidered since this type of antenna is used by The University of Texas

Millimeter Wave Observatory.

The parabolic reflector concentrates incoming radiation at a rec-

tangular waveguide feed located at the focus of the reflector as pic-

tured in Fig. 1. The rectangular feed is operated in the TE (domi-

nant) mode, and as a consequence, the polarization of the electric

field is fixed perpendicular to the long dimension of the rectangular

feed aperture. This implies that the feed, and therefore the entire

antenna, will only receive radiation with electric field components

parallel to the feed polarization (components perpendicular to the feed

polarization are not received). The plane of polarization for the en-

tire antenna may be rotated 90 electrical degrees by simply rotating

the feed a corresponding amount. In Fig. 2 a set of orthogonal polari-

zation positions are defined as viewed by an observed source. The PI

position corresponds to the alignment of the feed polarization along the

y (declination) axis while the P2 position corresponds to the alignment

of the feed polarization along the x (hour angle) axis.
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An equatorial .mount for the antenna shown in Fig. 1 is the most

convenient type of antenna mount for radio astronomy work. The polar

axis of the mount is aligned parallel to the Earth's axis of rotation,

and the declination axis is aligned perpendicular to the polar axis. In

the equatorial system, the position coordinates are hour angle and de-

clination. The advantage of using an equatorial mount is the fact that

radio sources move in hour angle at a more or less constant rate but

remain relatively fixed in declination. Thus only motion in hour angle

is required to track sources.

Radio sources emit radiation in the form of plane waves which are

in general partially polarized, that is, there are two components, one

part completely polarized and the other part completely unpolarized.

The polarization of a plane wave is described by the orientation

of the resultant electric field vector in the plane of constant phase

(normal to the direction of propagation) for the plane wave. Generally

a completely polarized plane wave will be elliptically polarized and

the tip of its electric field vector will trace out an ellipse in the plane

of constant phase.

Special types of polarization are linear and circular where the tip

of the resultant electric field vector traces out a fixed line and a circle,

respectively, in the plane of constant phase for the wave.

A completely unpolarized plane wave consists of a superposition of

a large number of statistically independent waves of a variety of polari-

zations. The wave has no preferential polarization and the resultant



electric field vector traces out a random pattern in the plane of constant

phase for the wave. The time averaged Poynting vectors measured in

any two orthogonal polarizations are always equal for a wave of this

type. Thermal blackbody radiation is a prime example of completely

unpolarized radiation.

A fundamental equation of radio astronomy that relates the mea-

sured power at the terminals of the antenna to the brightness of a com-

pletely unpolarized source being observed is

w ( c p ' , e ' ) = | A f f B(cp ,9) P (cp-cp ' ,9 -9 ' ) dQ, (1)
e «J J n
source

where w(cp , 6 ) is the measured power in watts-Hz as a function of

angular coordinates cp and 0'. The brightness of the source is B(cp,9)

-2 -1 -2
in watts-m -Hz -rad as a function of angular coordinates 9 and 9.

The normalized antenna power radiation pattern is P (9 ,6) and A is
n e

2
the effective area of the antenna in m . The factor of ^ is inserted be-

cause the antenna can only respond to one half of the incident radiation

from the unpolarized source. Also note that

dfi = sin 9 d9 dcp. (2)

At radio wavelengths the Moon acts as a source of thermal radi-

ation so that Equation 1 can be modified to express measured tempera-

ture in one linear polarization at the antenna terminals in terms of the

source brightness temperature. The modified equation is
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T f a ' . e ' ) =7T [ f TJcp.9) P (cp-cp ' ,9 -9 7 ) dfi, (3)
a. &£ 0 v S IIa

source

where T (cp', 9') is the antenna temperature in °K and T (cp, 9) is the
a s

source brightness temperature in °K. Equation 3 states that, in angle

space, the antenna temperature is similar to the convolution of the

source brightness temperature distribution and the normalized antenna

pattern, the entire convolution being normalized by the antenna solid

angle. An analogous situation is the transient convolution encountered

in circuit theory, where P corresponds to the impulse response of the

system transfer function, and T and T are similar to the signal in-
s a

put and signal output, respectively. The angle domain is also analogous

to the time domain and the antenna beam solid angle in rad is

n = f [ P (9,8) an. (4)a <J J n
sky

A useful concept in radio astronomy is the minimum amount of de-

tectable receiver output appearing on the chart record. Because all

receivers have some finite amount of noise present, the minimum de-

tectable signal is approximately the root mean square (rms) of the re-

ceiver output in the absence of signal, which is given by:

K T
_ r sys

ATrms ' - ' (5)

where T is the system noise temperature in °K; K is a dimension-
sys r

less constant (approximately Z) which depends upon the type of receiver
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used; Av is the predetection noise bandwidth of the receiver in sec ;

T is the postdetection integration time in sec and n is the number of re-

cords averaged.

It is common practice to quote a AT based on a one second inte-
^ rms

gration time. To find the AT for a set of data where averaging re-
rms

cords are used to decrease the noise,

AT
rms1 T = ! sec .,

• (o)
rms nr

A schematic representation of a typical radio telescope system is

shown in Fig. 3. The system noise temperature is

["-- 1~| + T (-}, (7)
L e J r V e y

T = T 4 T
sys a

where T is the physical temperature of the transmission line between/L

the antenna and receiver in °K; T is the receiver noise temperature re-

ferred to its input in °K, and T is defined the same as in Equation 1.

Also, e is the dimensionless transmission line power efficiency.

Atmospheric attenuation of electromagnetic radiation at millimeter

wavelengths is primarily due to molecular resonances of the oxygen

molecule and absorption caused by water vapor. Since these sources

of attenuation vary with the frequency of millimeter radiation, several

regions of minimum attenuation or "windows" are formed. Fig. 4 shows

the one-way transmission vertically through a standard atmosphere

(7. 5 gm/cc of water vapor) after Straiten and Farinin . The total
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attenuation in dB is the sum of oxygen and water vapor attenuations.

The various windows are located at approximately 1.2, 2 . 1 , 3. 1 and

8. 6 millimeters wavelength.



III. SMOOTH MODEL, DERIVATION

This chapter is devoted to the derivation of an emission model for

a smooth dielectric sphere scaled to approximate the Moon as observed

from Earth. Suppose an electromagnetic plane wave strikes a plane

dielectric boundary at an angle of incidence p., as shown in Fig. 5.

The angle g. is measured between the surface normal n and the plane

wave propagation vector k.. The two media are assumed to be homo-

geneous, isotropic, and semi infinite in extent. A plane of incidence is

—»
defined as the plane containing the surface normal n and the unit normal

—*
to the incident plane wave k.. In Fig. 5 the plane of incidence coincides

with the page. The incident plane wave can always be resolved into a

component parallel to the plane of incidence and a component perpen-

dicular to the plane of incidence. The subscripts "i", "r", and "t" re-

fer to incident, reflected, and transmitted quantities, respectively. The

circle notation implies a direction normal to the plane of incidence, out

of the page, and the dot notation implies an opposite direction.

Assume medium 2 has a relative permeability fj, of unity and a re-

lative permittivity of e (hereafter referred to as the dielectric constant)

and also assume medium 1 is free space, or:

a- « 0 aL = 0

15
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[14]
According to Stratton , the Fresnel formulas for the ratios of

transmitted energy to incident energy in planes parallel and perpendi-

cular to the plane of incidence are

sin 23. sin 2fi

(p , p ) = —^ ' T • (9)
1 sin (3. + 3t) cos (3. - 3t)

and

sin 23. sin 2p

s n

— * — »

where p is the angle of transmission measured from n to k . Snell s
t . U

Law states that

sin 3. = -^= sin p , (11)

or

cos p. = ̂  1 - - sin 3t . (12)

Dropping the "t" subscript and substituting Equations 11 and 12 into 9

and 10 we have

4e cos 3 V e - sin 3
< e , B ) =- - E - / ; _, . (13)r~ ? "i'

e cos 3 + / e - sin 3

and

cos 3 + / e - sin 3
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Suppose that the indicent energy in medium 2 is due to the thermal

emission of that medium. This would imply that the incident energy is

completely unpolarized or, taken another way, that the time averaged

Poynting vector measured in any two orthogonal polarization directions

in medium 2 are equal. Since there is no preferential polarization of

energy in medium 2, the time averaged magnitudes of the transmitted

energy in medium 1 will depend only upon the magnitudes of T (e, 0)

and T (e, p).

Actually, the mechanism of thermal emission in medium 2 is des-

cribed by a superposition of an infinite number of plane waves at an

infinite number of wavelengths propagating in an infinite number of

directions in medium 2. There is, however, only one unique direction

in medium 2, namely k , that will allow transmitted plane waves to be

—+

observed at a direction k . Also, observations are taken in such a way

as to filter out all radiation except for a narrow band about \, the wave-

length of interest. Therefore only one plane wave propagating in the k.

direction in a narrow band about \ is observed out of many such plane

waves.

Now suppose that a smooth, very slightly lossy, homogeneous di-

electric sphere with dielectric constant e were located in free space.

Assume for now that the sphere possesses some surface temperature

distribution T ( Q , Q ) . Since the sphere is slightly lossy, the thermal

radiation emitted from the sphere at millimeter wavelengths originates

at some depth beneath the surface.



19

The sphere has a radius R equal to the mean radius of the Moon,

and the sphere is located at distance D from an observer equal to the

mean Earth-Moon separation. The sphere now approximates a smooth,

uniformly heated Moon. Since R » X the curvature of the surface

approaches a flat plane. Equations 13 and 14 will now be valid for a

point on the surface of the sphere. Fig. 6 shows the geometrical con-

figuration for an observer at a distance D from the sphere. Note that

P = 6 + P. (15)

where 3 is the angle between the surface normal and the observer's

line-of-sight; 6 is the position angle of point P with respect to the ob-

server measured at point C, and p is the difference between (3 and 6.

In the case of the Moon as seen from the Earth the angle p is small and

sin p « p, (16)

so that

= s i n- i , ,„. , ,-ir rt/R(r t /R) + sin"^ r—-— 1->_

V (D/R) - 2 ( D / R ) V 1 - (r t /R) + 1

(17)

where r is the measured from the apparent center of the disk to the

point of emission.

In Fig. 7 a frame of reference for the observer is shown using a

polar coordinate system. E and E are the transmitted electric

fields, and 0 is the position angle of the point P while 9 is the position



20

a:
h-
UJ
5
O
UJ

UJ
cc
UJ
X
QL
CO

o»
iZ



21

o
O

o>
o
o
o.

CO

o
<v

o
O
CT>"

o
I
CO

cr
UJ
>
cr
LJ
en
m

2»
cr
£o

UJ
o M
O LJ —

CM

O
0-

LJ
cr

O

LJ



22

angle of the observer's plane and polarization. Both angles are mea-

sured counterclockwise from a reference line taken to be the equator

of the sphere. The plane of incidence always lies along any radius

drawn from point C to point P. The received radiation from point P

at a temperature T as derived from Appendix A is,

T p l ( e , p , 9 ) = T[T ( e , p ) sin2 9 + rje.p) cos2 9], (18)

and

T ( e , 3 , 9 ) = T[T ( e , 0 ) cos2 9 + 7 ( 6 , 3 ) sin2 9], (19)re. j.

where 9 = 0° by convention, also PI = 9 + 90°; P2 = 9 . Equations 18
o o o

and 19 are measureable quantities for an antenna with an infinitely narrow

beamwidth. Note that 9 now becomes the angle between the plane of in-

cidence and the observer's plane of polarization.

For a scan of the sphere across the apparent equator (9 = 0°),

T p l ( e ,p ,0° ) = T ( p , 0 « ) T A ( e , p ) , (20)

and

T ( e , p , 0 ° ) = T ( p , 0 ° ) T ( e . p ) , (21)
f£. ||

where T(j3, 0°) is the brightness temperature distribution across the

apparent equator of the lunar disk.

It is possible now to probe the functions T ( e » P ) and T (e, 3) inde-

pendent of each other. In practice, however, the antenna beam can

miss the apparent center by some small distance d as shown in Fig. 8.
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Then

r t = V r +d , (22)

and

9 = sin^f f- ), (23)

where r is the true distance from point P and point C. Using Equations

17, 22, and 23, Equations 18 and 19 can be rewritten as

2 2
T (e . r . d ) = T ( 0 , 9 ) [T ( e . r .d ) ( d ^) + T ( e . r . d ) ('—£-_-') 1

P1 L » V + d2^ -1 V-f d^J

(24)

and

T p 2 ( « . r , d ) = T ( P , e ) [ T («,r,d)(-
r -f d r + d

(25)

where T(p , 9) is the true surface temperature distribution of the Moon.

The percent polarization is now defined as

T (e . r .d) - T (e, r, d)

or

T ( e . r . d ) - T (« , r , d ) 2 2
%Pol(e,r ,d) = -^ JX . . TT- ( - -- ) . (27)

T (e, r, d) + T (e, r, d) V 2 2y v '
II J- r + d
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This model now predicts the noise free, linear percent polarization

for a smooth, homogeneous Moon (for an infinitely narrow beamwidth

antenna). Since T(p, 9) cancels out of the percent polarization, the

model is independent of the temperature variations across the lunar

surface.

On a scale of a few millimeters, however, the Moon is not very

smooth and one would expect that the smooth model would incorrectly

estimate the percent polarization. Accordingly, the derivation of a

rough lunar model with shadowing follows in Chapter IV.



IV. ROUGH MODEL DERIVATION

Surface roughness on the Moon may be classified into three

separate regimes. The first regime consists of a slowly undulating,

smooth surface that is a plane in the mean. The undulations are much

greater than the wavelength of observation X, and this regime is class-

ified as large scale surface roughness. Most of the attention of this

chapter will be devoted to this regime.

The second regime consists of roughness on the order of a wave-

length X in size, which shall be classified as intermediate scale sur-

face roughness Under some circumstances it is quite possible that

this regime may substantially affect the polarization of lunar thermal

emission. There seems, however, to be no adequate way to account

analytically for roughness of the order of \ at the present time since

the diffraction integrals are somewhat difficult to evaluate. The Fresnel

equations presented in Chapter III are no longer valid since they assume

no intermediate scale roughness. Empirical studies would perhaps be

[15]
one way of approaching the problem.

The third regime consists of roughness much smaller than X. Small

scale surface roughness should affect the polarization of lunar thermal

emission very little, since the apparent surface would appear as a

smoothed version of the actual surface.

A rough model for large scale surface roughness may be derived

directly from the smooth model in Chapter III by employing a statistical

26
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geometric optics approach. Consider a rough surface consisting of

tilted facets uniformly distributed over the surface. The surface is a

plane in the mean and the dimensions of the facets are much greater

than X. In Fig. 9 a typical facet is pictured. A set of orthogonal coor-

dinates x,y, and z are fixed at point P on the lunar surface. Recall

that point P is identical to point P in Figs. 6, 7, and 8.

-4

The tilted facet has a surface normal n which makes an angle a
o

with n, the surface normal for the mean (flat) surface. The facet is

positioned by p and q, the slopes of the facet measured in y and x, re-

spectively. Note that

p = tan cp; (28)

q = tani | f , (29)

and

(30)

Both p and q are modeled as random variables that are zero in the

mean, and we will assume both have an equal standard deviation of a.

Also, p and q are assumed to be independent with a jointly normal pro-

bability density function

f(p
2rra 2a

For surfaces that are the result of a large number of repeated events

occurring randomly over the surface, the Central Limit Theorem applies
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M
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and insures a nearly normal probability density of surface heights.

Examples of some randomly repeated events that might occur on the

lunar surface are meteorite impacts of various sizes and shapes and

geological activity such as moonquakes and lava flows. If the effects

of these randomly repeated events are distributed uniformly over the

surface, the statistics will be homogeneous over the surface, and

furthermore, if these events or processes operate without a preferred

direction the statistics are isotropic over the surface.

Beckmann and Spizzichino have shown that a surface which ex-

hibits a normal probability density of surface heights also exhibits a

normal probability density function of surface slopes. This tends to

justify the use of Equation 31 here.

The angle y is the true angle of transmission given by

-1 f cos 3 + q sin 3 ~\
y = c o s ( 1 2 2 ) ' ^ ^

V 1 + p + q

Here, p would be the angle of transmission if the facet was not tilted

(p = q = 0). The plane of incidence for the tilted facet is the plane con-

—* —*
taining n and k while the plane of incidence for the smooth surface is

—» -*
the plane containing n and k .

Recall that in Fig. 8, 0 was the angle between the plane of incidence

for the flat surface and the observer's plane of polarization. The rough

surface, however, rotates the plane of incidence by an angle T] as can

readily be seen in Fig. 9, where
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*2 2
| P (! + tan B)

(tan p - q)

Note that T| is measured in a plane perpendicular to, and is the angle

between, the plane of incidence for the smooth sphere (flat surface)

and the plane of incidence for the rough sphere (tilted surface).

A surface exhibiting large scale roughness has two effects on the

smooth model. The first effect is to change the angle of transmission

for a. flat surface to the corresponding angle for a tilted surface (0 -• Y).

The second effect is to rotate the plane of incidence by an additional

angle T].

Substituting equations 32 and 33 into 18 and 19, one finds that

T p l (e , Y , e ,71) = T[T ( e , Y ) sin2 (6 + T\) + ^(e.y) cos2 (9 + Tj)]t

(34)

and

T p 2 ( e , Y , e ,T ) ) = T[T ( e , Y ) cos2 (9 + Tj) + T^e.y) sin2 (9 + 7])],

(35)

where T (e, Y, 9, T]) and T (e, Y> 9, T]) are now related to the random

variables p and q.

A third effect of surface roughness is to create shadowing. Shadowing

is a term used to describe the obscuring of the emission from a far facet

by a closer facet.
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For a statistically rough surface, a shadowing function S(c, (3,q) is

defined as the probability that the emission from a point on the rough

surface characterized by a, the standard deviation of surface slopes,

and with a local slope of q, will not be shadowed at an angle of trans-

r i8i
mission 3. A statistical model for S(a, 3, q) developed by Smith

will be used in this study, but the details of the derivation of S(a, (3, q)

will not be given here. The function is

l, (36), , . ,

where u(q + cot p) is the unit step function given by

A /0
U(X) = il

O for x < 0
for x > 0'

and

Also,

X Z, . . . 2 r -t
erf (x) * -p [ e"' dt. (39)

/TT J

The shadowing function appears to satisfy one's intuition about rough

surfaces since S(a, 0° ,q) = 1 (no shadowing is observed for a rough sur-

face viewed normally), and S(a, 90°, q) = 0 (total shadowing is observed

for a rough surface viewed at grazing incidence).

The unit step function takes into account the fact that only a point

on the rough surface with a local slope q less than the slope of the
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line-of-sight (cot p) can be observed from above. Also, the shadowing

function is independent of the other local slope p, since the line-of-sight

is measured in the same plane as q is measured.

Also, the derived shadowing function is in good agreement with the

computer simulation of shadowing from a random rough surface by

[19]Brockelman and Hagfors . This fact tends to justify the assumptions

that Smith has made in his derivation. Fig. 10 shows

°° 2_
S(o-,p) = J S(a ,p ,q) exp(^_) dq, (40)

2a

or

_ l [ 1 + e r f C / r a t a n B ) ] .

where the bar superscript implies an expectation and S(a, p) is the ex-

pected probability that point P on the rough surface characterized by a,

will not be shadowed at an angle of transmission of p, independent of sur-

face height and local slopes p and q.

Taking into account shadowing, the expected value of Equations 34

and 35 are

00 CO

T p l ( e , a , p , e ) = J J S(a, 0. q) Tp l(e, Y. 0, T]) f(p, q) dpdq, (42)

— 00 —\00

and

T p 2 (e , a ,p ,0 ) = J J s ( a , p , q ) Tp 2(e,Y ,9,1l) f(p,q) dpdq, (43)
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Taking full advantage of the symmetry of the integrand with respect to

the random variable p and the unit step function, we have

CO 00

2
T p l ( e , a , p , 9 ) = YTA I J T p l <e, Y. 9,1)) f(p, q) dpdq, (44)

- COt p O

and

00 00

T p 2 ( e , a , p , e ) = j-j-^- J J T p 2 ( e , Y , e ,T l ) f (p ,q) dpdq. (45)

- cot 6 o

Converting from angles p and 6 to the distances r and d is accomplished

by substituting Equations 17, 22, and 23 into Equations 44 and 45 so that

functionally speaking

f p l ( e , a , r , d ) = f p l (e ,a ,3 ,8) , (46)

and

T p 2 (e ,o - , r ,d ) = T p 2 (e , a , e ,9 ) . (47)

Equations 46 and 47 predict the noise-free linear polarization for a

homogeneous, rough Moon (first regime) for an infinitely narrow beam-

width antenna that is linearly polarized in PI and P2.

A possible source of error in the model arises if the Moon is not a

good dielectric. This situation could be easily treated by introducing a

complex dielectric constant given by

o-?
e = e' - j~ = e' - je", (48)
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where e' is now the real part of the dielectric constant; a is the non-
£*

zero conductivity of medium 2, and the radian frequency of observation

is denoted by u>. For most substances that approximate the lunar soil,

°2however, e' » — and the dielectric constant is very nearly a real
U)

quantity anyway. Basaltic powders, for example, have e ' at least 500

times greater than— at a wavelength of 1. 2 cm.
(U

Also, if the relative permeability p, of the lunar soil is greater than

unity, and there is no reason to believe that it is, then the relative re-

fractive index between medium 2 and medium 1 can be defined as

"zi = 7P • (49)

and n would simply replace e in Equations 13 and 14.
Li *•

There are two more important sources of error in the model,

namely, the nonuniform heating of the lunar surface (phase effects de-

noted by T(p, 6)) due to the Sun, and the existence of an inhomogeneous

lunar surface (variations in the actual dielectric constant and/or changes

in porosity). These errors are affected by antenna beam smoothing and

will be discussed in more detail in Chapter V where beam smoothing

is treated more extensively.



V. BEAM SMOOTHING

This chapter contains the derivation of the antenna response to the

rough model obtained in the previous chapter using a Gaussian approxi-

mation for the measured antenna pattern. Equation 3 in Chapter II gave

the response of the observer's antenna to the Moon's signal as the con-

volution of the lunar brightness temperature distribution with the nor-

malized antenna power radiation pattern. Since the Moon is small in

angular extent (approximately 0. 5° ) , and the half power beamwidth of

the antenna is smaller still (0.045°), then the spherical coordinate

system may be replaced by a more convenient rectangular (x-y) coor-

dinate system. Equation 3 now becomes

T a ( x / ' y / ) = Q ~ I I Ts (x 'y) P
n(x-x '-y-y') dxdy, (50)

a source

where x and y now correspond to hour angle and declination, respectively.

The normalized power radiation pattern for the 4. 88 meter parabolic

reflector at 3. 1 mm wavelength can be fairly well approximated by a two

dimensional Gaussian function of the form

where 2 W and 2W are the half power beamwidths in hour angle and de-
x y

clination, respectively. In the function P (x-x' .y-y7), the peak occurs

at x = x7 and y = y7 and the half power curve is the ellipse described by

the curve

36
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(52)
y

Note also that Equation 51 assumes that the semi-minor and semi-major

axes of the half power ellipse are oriented.along the hour angle and de-

clination axes.

One advantage of this Gaussian approximation is that the values for

P (x-x ' ,y-y ') off the x or y axis are simply the product of the pattern

in x times the pattern in y or

P (x-x'.y-y') = P (x-x') P (y-y'), (53)
n nx ny

where

/ 2
X"X ' ' (54)

and

/ 2
P (y-y') = exp \ - l n 2 ( - ^ J - J . (55)ny * ' ' * ' \ VT j \

The antenna solid angle, Q now becomes
ct

n = nxny, (56)
a

where

(57)

and
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n (y) dy = W /rr/tn 2 . (58)

Suppose scans in hour angle are taken through the apparent center

of the Moon (along a lunar diameter). Because of the circular sym-

stry of the model the brightness temperature is symmetrical in y about

the lunar diameter. In practive W and W are very small compared to

the brightness temperature distribution in y and therefore the antenna

measures an approximately constant temperature in y and

T ( x , y ) « T (x). (59)
s s

Equation 50 now becomes

T a ( x / ) = f T I Ts(x) Pnx(x"X/) **' (60)

x
source

Accordingly, Equations 48 and 49 can now be easily convolved using the

above equation so that (letting r and r' replace x and x') we have

1 source

and

^ a P 2 ( e > C T > r / > d ) =ff J T P2 ( e ' a > r ' d ) P n2 ( r " r / ) d r ' (62)

2 source

where n and fi are the antenna angles (no longer solid angles) mea-
•!• £

sured in hour angle for polarization positions PI and P2, respectively.

Also, P . (r-r ') and P _ ( r - r 7 ) are the normalized power radiation patterns
nl n&

measured in hour angle for PI and P2, respectively, where
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/ 2
P , (r-r ' ) = exp ["--In 2 ( T~J ") ~| , (63)

nl L V Wl J J

and

/ ^ 2
—^- ) 1. (64)w2 y J' * '

where 2W and 2 W_ are the half power beamwidths measured in hour
1 L*

angle for polarization positions PI and P2. The linear polarization

positions are achieved by a simple rotation of the linearly polarized

feed as shown in Fig. 2.

An experimental verification of beam ellipticity (W j^W ) is accomp-
i L*

lished by taking drift scans across the center of the quiet Sun in polari-

zation positions PI and P2. Since radiation from the quiet Sun is thought

to be unpolarized, the difference between the measured polarizations in

PI and P2 should be due to the unequal antenna patterns in PI and P2.

This false difference of polarizations will be called pseudo-polarization.

Figs. 11 and 12 show the pseudo-polarization of the quiet Sun on two

separate occasions. Polarization differences of 1 to 2 percent relative

to the central disk temperature are observed for b-eamwidths (2W, arid 2W )
* L*

that are as close as . 002°! Since the peak percent polarization for lunar

thermal emission is only about 3 to 4 percent at the limbs at 3. 1 mm,

pseudo-polarization is an important effect to consider in analyzing the

lunar data. Pseudo-polarization effects can be accounted for by assuming

unequal half power beamwidths in the convolutions of the antenna beam

with the rough lunar model.
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The percent lunar polarization for the rough model is defined for

the disk of the Moon as

f ( e . a . r ' . d ) - f ( e . a . r ' . d )
%Po l ( c , a . r ' , d )S - **L , „ . * . -r-r ' (65)

aP2 ' aPl

In Fig. 13 a three dimensional plot of the linear percent polari-

zation is shown with variations in the effective dielectric constant, the

standard deviation of the surface slopes, and the normalized apparent

lunar radius. A mean lunar radius of 1738 km and a mean Earth-Moon

separation of 384, 400 km were used to calculate a mean lunar parallax p

(see Chapter III Equation 15). Values for 2W and 2W are .045° and .0435°,
J« L*

respectively.

If the antenna beam misses the apparent center of the Moon by a small

distance d (normalized to an apparent lunar radius), as pointed out in

Chapter III, then the variation of the %Pol with d must be investigated as

shown in Fig. 14. Notice that the %Pol is a negative quantity near the

center of the disk for a non zero value of d. This implies that the excess

linear polarization is normal to the path of the scan. Normally, the %Pol

is a positive quantity implying that the excess linear polarization is parallel

to the path of the scan.

The distance d must be kept small or the symmetry properties of the

polarization about the path of the scan will not hold true. The symmetry

condition was necessary, recall, for the approximation of the two-di-

mensional convolution (Equation 52) as a one-dimensional convolution

(Equation 62).
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Fortunately, the percent polarization is a quantity that is relatively

insensitive to temperature variations across the lunar disk. This is due

to the fact that the numerator and denominator of Equation 65 are both

proportional to the surface temperature by approximately the same

factor and their ratio, therefore, tends to be very weakly dependent

upon temperature. To verify this fact, the percent polarization for a

linearly varying temperature distribution was compared to the percent

polarization for a constant surface temperature. Since the maximum

relative error between the two models is less than one percent, the

effect of surface temperature variations on the percent polarization

can be regarded as negligible compared to the noise in the data.

Another possible source of error may arise from the fact that the

lunar surface may not be entirely homogeneous. Variations in e over

the surface could be due to actual variations in the type of material ob-

served (highland regions may have a higher e than maria regions for

example).

The average half power beam area projected on the Moon is roughly

70, 000 km , the effective area over which the main beam weights and

averages the surface inhomogeneities. Surface irregularities much

2
less than 70, 000 km in extent would be averaged over to some mean

value and their effect on the data would not be appreciable.



VI. EQUIPMENT AND EXPERIMENTAL PROCEDURE

This chapter contains a brief description of the equipment and the

data taking procedure used in this study.

The University of Texas Millimeter Wave Observatory is located

on Mt. Locke near Fort Davis, Texas. The location is ideal since the

atmospheric attenuation due to water vapor is low owing to the dry cli-

mate and high altitude (2070 meters).

The prime instrument of the Observatory is a 4. 88 meter diameter •

parabolic reflector. At 3. 1 mm the 3 dB beamwidths are .045° in hour

angle and . 0435° in declination. The principle sidelobes in the hour

angle and declination planes are at least 20 dB down and the cross polari-

zation sidelobes are at least 25 dB down. The procedure for measuring

the antenna pattern is to point the antenna at a transmitter site located

approximately 13 km away. The "pattern range" was particularly good

in that the reflections from the surrounding terrain were minimal due

to the particular properties of the range, which have been reported by

Cogdall.[21]

The antenna is supported by an equatorial mount as shown in Fig. 1.

The entire structure is enclosed in a steel astrodome to protect the an-

tenna and equipment from the weather.

The antenna is positioned by servo systems with digital readouts to

.001°. Sag, axis tilts, and atmospheric refraction have been corrected

for in an ephemeris used for locating radio sources. The peak pointing

46
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errors of the antenna are less than . 006°. A more detailed description

A

[23]

[22]
of the antenna system is given by Tolbert, Straiton, and Krause . A

thorough evaluation of the antenna's performance by Davis and Cogdell

e res

[25]

[24]
and Davis . has been made, and the results indicate that the antenna

ranks with the best in its peer group.

The receiver used in this study is a 3. 1 mm (97. 1 GHz) superhetero-

dyne radiometer schematically shown in Fig. 15. The receiver consists

of an RF mixer and IF amplifier located at the prime focus of the dish

followed by a lock-in amplifier located in an observation room in the dome.

The AT I of the receiver was approximately 5. 0°K for the lunar
rms' T = ! sec

data.

Six sets of lunar polarization data were taken from February to

March 1971. Table 1 shows the relevant lunar physical observations for

each of the six data sets. Values for the apparent lunar semidiameter

(radius) and the velocity of the Moon with respect to the Earth were ob-

tained from an ephemeris already in existence. Values for the phase

and tilt for 0 hrs. Universal Time (U.T.) were obtained with the Ameri-

can Ephemeris and Nautical Almanac.

The data was taken under conditions of optical visibility with little

or no surface winds present to introduce pointing errors. Drift scans of

the Moon were favored because of the constant tracking rate produced.

This eliminated any variation in tracking that would produce rapid changes

in antenna temperature at the limbs of the Moon.
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The antenna feed was set up in the PI polarization position (see

Fig. 2), and the antenna was pointed at a location 0. 75° west of the

apparent center of the Moon. With the antenna fixed, the data scan

was initiated and the Moon was allowed to drift through the antenna

beam till the Moon was 0. 75° east of the beam and then the data scan

was terminated. This process was repeated three more times in PI,

then the polarization was changed to P2 and four more drift scans were

obtained. In this way equal numbers of drift scans in PI and P2 were

acquired till either a sufficient amount of data had been obtained or

bad weather forced termination of the data taking.

An integration time of 4 seconds was used, giving a spacing between

data points of roughly . 016° or 1/3 beamwidth. A longer integration

time of 10 seconds was available and would have increased the receiver

sensitivity, but sampling would have smoothed the data undesirably.

The digitized data was punched out on coded paper tape for later

conversion to punched computer cards. The data was analyzed on the

CDC 6600 high speed digital computer in operation at The University of

Texas at Austin.



VII. DATA ANALYSIS

This chapter describes the data analysis scheme and briefly dis-

cusses some of the numerical techniques employed. The main goals

in analyzing the data are to minimize the receiver noise present, and

to display the final results in such a way as to lend insight into the be-

havior of the linear polarization of lunar thermal emission at 3. 1 mm

wavelength. The raw data, in the form of punched computer cards, is

analyzed by a computer program that outputs the linear percent polari-

zation data versus a normalized lunar radius. Another program least

squares fits the final rough model (Equation 65) to the linear percent

polarization data. The outputs from this program are values for e, the

effective dielectric constant, and a, the standard deviation of surface

slopes, along with confidence limits for both parameters.

To begin with, a straight line is least squares fitted to the two base-

lines on either side of the Moon's signal for each drift scan. The fitted

line is then subtracted from the scan to remove any receiver drift and

offset that may be present. A linear model is used here because the

baseline drift of the 3. 1 mm radiometer is small and nearly linear during

one drift scan (approximately 6 minutes).

Many scans are averaged in both the PI polarization position and the

P2 polarization position so that the receiver noise can be reduced signifi-

cantly. The averaging process requires that the apparent centers be

known in order for the averaging to be done on ordinates with identical
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abscissas relative to the centers of the scans. In this connection a model

that approximates a scan across a lunar diameter was developed to locate

the centers of the scans. The center of each scan was obtained by least

squares fitting the model to the scan.

First, a simplified model for T (x), the lunar brightness tempera-
8

ture, is assumed to be of the form (see Fig. 16)

Tg(x) = <Tc + mx) [u(x + x^) - u(x - x^)], (66)

where T is the average temperature of the lunar disk (also the central

disk temperature); m is the slope of the brightness temperature distri-

i

bution across the lunar disk; x is the abscissa coordinate (zero at the

center); x is the distance measured from the center to the limb and u
\s

is the unit step function.

A Gaussian approximation for P (x), the normalized power radiation
n

pattern of the antenna in one dimension, is

2
Pn(x) = exp[-tn2(^) ], (67)

I

where, as before, 2W is the half power beamwidth measured in x.

Using Equation 52 in Chapter V, T , the antenna response, is
ct

simply the convolution of Equation 66 with Equation 67 which is

x'-x +x

x'-x +x 2 x'-x -x 2.mw f r f~ c £Vi r ^ c tvii+ 2/ifZn-z texpL" v W//KJTT ) J " e x p L v w/yiHT y Jr
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re-where x is now defined as the location of the apparent center and x'

presents the abscissa coordinate in the data plane. For clarity, the scan

model represented by the above equation is shown along with T (x) and
s

P (x) in Fig. 16. The scan model determines x to within an average

maximum uncertainty of ±. 003°. The other parameters determined by

the model are m, T , x , and W which are used to achieve a good least
c \i

squares fit to the scan.

Once the centers of the scans are located, a new set of abscissas is

defined for all scans with x' = 0 at the center. This is because, in general,

the scan centers will not be in the same location for each scan. A new set

of ordinates is obtained for the newly defined abscissas by linearly inter-

polating between successive pairs of the old ordinates. This allows the

averaging to be done on the ordinates with common abscissas for all

scans. The linear interpolation also reduces slightly the receiver noise

present in the data.

After the scan center is determined and before the scan is averaged

with others, the scan is normalized at its central ordinate by first aver-

aging the central ordinate with a point on either side to reduce the uncer-

tainty. This average is then divided into to the entire scan for the proper

normalization. This process is done for both the PI and P2 scans since

the lunar thermal emission at the apparent center is approximately un-

polarized due to spherical symmetry. The normalization procedure

eliminates the need for an absolute temperature calibration for the scan
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since the data point numbers are now relative to the normalized central

disk temperature.

Each data scan is analyzed in the above fashion and stored according

to the polarization position (either PI or P2) for averaging to reduce

noise fluctuations. The data in PI is then subtracted from the data in

P2 and this difference is then divided by the sum of the PI and P2 data,

point by point, to simulate the final linear percent polarization model

derived in Chapter V (see Equation 65).

The abscissas are normalized to an apparent lunar radius for easy

comparison between data sets taken at times when the Moon was at

different distances from Earth.

Chapter V showed that the linear percent polarization (sometimes

referred to as the degree of linear polarization) was relatively insensi-

tive to lunar phase effects. Another advantage of displaying data as a

linear percent polarization is that this quantity is less sensitive to

noise than a simple difference of polarizations (T - T ) as shown
cL.i £ *^

in Appendix B.

Estimates of e and a are obtained by least squares fitting the non-

linear model in Equation 65 to each of the six data sets. Appendix B

shows that the i residual of the model regression (assuming that the

model is correct) has a value given by

<69>
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2 2
where a and a_ are the variances of the noise for the final averaged

PI and P2 polarization scans, respectively. Since S^ varies over the
vo

lunar disk as a function of x., weighted least squares are used to weight

each data point of the percent polarization proportional to T (x.), the

average polarization signal.

The model for the percent polarization in Equation 65 is said to be

intrinsically nonlinear, that is, the form of the model is nonlinear in the

model parameters e and a, regardless of any transformation attempt to

achieve a linear model (linear in e and a). There are many techniques

that are currently used to obtain parameter estimates for intrinsically

nonlinear models but we shall only discuss three relevant methods here.

The linearization method uses a Taylor series expansion of the non-

linear model where the expansion is curtailed at the first partial de-

rivatives of the model with respect to each model parameter. The

expansion is now a linear model form to the order of the approximation

and the parameter estimates can be obtained by standard linear least

squares estimation theory. The linearization procedure has several

possible drawbacks for some nonlinear models, namely, the sum of

squares (defined as the sum of the squares of the differences between

the observed data and model prediction) may converge very slowly,

oscillate wildly, or diverge altogether.

The steepest descent method concentrates on minimizing the function

representing the sum of squares for the nonlinear model. Starting with
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the sum of squares for a point in parameter space, several different

sum of squares are calculated by selecting several different combina-

tions of model parameters. The evaluated sum of squares are now

treated as observations of a dependent variable and the combinations

of model parameters are treated as observations of the corresponding

independent variable. A plane is now fitted to the surface defined by

the sum of squares using linear least squares techniques which gives

an indication as to which direction to move in order to maximize the

decrease in the sum of squares function. While, theoretically, the

steepest descent method will converge the sum of squares, it may do

so in practice with agonizing slowness after some rapid initial progress.

The method used to obtain estimates of e and a in this study is known

[27]
as Marquardt's compromise. This method appears to enlarge on the

number of nonlinear models that can be handled by nonlinear estimation

and represents a compromise between the linearization method and the

steepest descent method, combining the best features of both while

avoiding their most serious limitations. Suppose from an initial point

in parameter space the steepest descent technique gives a vector in that

space which represents the best local direction for movement to obtain

smaller values for the sum of squares. This local direction, however,

may not be the best overall direction because of the inherent nonlinear

properties of the model. The application of the linearization method

leads to another vector in parameter space that is less than 90° from
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the first vector. The Marquardt algorithm provides a method for inter-

polating between the two vectors to achieve an optimum reduction in the

sum of squares. The details of his method will not be given here; how-

ever, a discussion of Marquardt's compromise can be found in the pre-

viously quoted reference and a more complete introduction to nonlinear

estimation theory is given by Draper and Smith

[291
Two versions of a basic library program by Marquardt and Stanley

employing Marquardt's compromise are used in this study. The first

version was used to fit the scan model in Equation 68 to the data in order

to locate the scan centers.

The second version employs weighted nonlinear least squares and

is used to obtain values for e and a from the percent polarization data.

The numerical integrations of the rough model in Equations 44 and

45 were done with a subroutine that employs a modified Simpson's rule

to evaluate the integrals between the appropraite limits. The interval

is divided successively into thirds until a set convergence criterion is

met. Since the subroutine operates on only 1/3 of the interval on any

given level, it has the ability to concentrate points only in those portions

of the interval where the slope of the integrand is varying rapidly. For

a given accuracy, this method uses only about 1/5 the number of points

used in an equal-interval type of Simpson's rule. The fewer the number

of points used, the less time will be required for the integrations.

A description of the confidence limits on e and a together with a dis-

cussion of the experimental errors and results is given in the next chapter.



VIII. RESULTS AND CONCLUSIONS

This chapter summarizes the various sources of experimental error

along with the results of the data analysis scheme. The experimental re-

sults are compared to those of previous workers in this field.

Receiver noise was the main source of experimental error encoun-

tered in this study. This necessitated the averaging of anywhere from

24 to 48 drift scans in each of the two polarization positions to reduce

the noise to acceptable levels. The final receiver noise present in the

linear percent polarization data for each data set is expressed in the
I

same units as the linear percent polarization and is listed in Table 2.

Also, the greatest amount of noise reduction is achieved when the linear

percent polarization of lunar thermal emission is expressed as a ratio

of the difference over the sum of the two orthogonal polarizations (see

Appendix B).

The absolute pointing errors of the antenna are very small at . 006°

peak. There was a systematic offset from the apparent center of the

Moon for some of the data sets. This offset was not due to systematic

antenna pointing errors but was caused by an error in the ephemeris.

Initially, all data was obtained by making drift scans through the sub

Earth point on the Moon. Later, however, it was realized that the

correct point for the drift scan to intersect was the apparent center.

It should be pointed out that the mean center is simply the average

position of the sub Earth point over a lunation, and the two points do

59
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ÎH
CU
CO

S
i— (
rd
CJ
•i-i

CO

ts
cd

cu.— i
cu

PH

CU

•1-1
4-1
CJ
cu

"+H
•+H

T)

rd

rd

CO

0

In

U
cu

r— 1
CU

• iH

O
• iH
4-*
rd
•H

cu
Q

cu
• H
4-1
O
CU

m

-d
cu

4-J
rd
£

•H
4-1
CO

W

O
CU
00

0)
d
CU
U

CJ
t *

d
ri
CO

d
o

cu
CJ

cd
*4H

O

y
• •-I

4->
CJ
CU

cu
0W

IH
<U
>

'53
CJ
cu
K

a
O
•Hi %

U
cd

ĉu
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not necessarily coincide at a given instant. The ephemeris was

corrected to compute where in declination the antenna should have

been pointed in order for the antenna beam to drift through the ap-

parent center. From the old ephemeris coordinates the offsets were

computed and the parameter d was created to take this systematic off-

set into account in the model (see Equation 65 and Fig. 14). For small

d this source of error can be eliminated.

Another possible source of experimental error can arise if the

antenna patterns in the PI and P2 polarization positions are different

(sometimes called beam ellipticity). Chapter V uses a specialized

Gaussian approxmation of the antenna patterns to account for the pseudo-

polarization effects due to beam ellipticity. The approximations should

be sufficiently valid to eliminate beam ellipticity as a possible source

of error.

Another general class of errors are due to the data analysis scheme.

The maximum uncertainty in finding the centers of the lunar drift scans

was about,±. 003°. In practice, this source of error is negligible com-

pared to the receiver noise.

The numerical approximations of the integrals in Equations 48 and

49 were done with sufficient accuracy (three significant digits for the

linear percent polarization) to also make this possible source of error

negligible compared to the receiver noise.

A typical drift scan profile along with the reduced percent polari-

zation is shown in Figs. 17 to 28 for each of the six data sets. The
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%Pol (linear percent polarization) data is roughly symmetrical about the

apparent center (r /R = 0), as one would expect from spherical symmetry,

and the peaks occur close to the limbs (r /R = 1). Also, the data is approx-

imately zero at the center due to the manner in which the data is analyzed

(see Chapter VII).

All six of the data sets have roughly the same magnitudes for the peaks

(approximately 3-4%), except for data set number four in Fig. 24. This

set is unique because the magnitudes of the peaks are only about 1. 8%.

This small value can be explained by comparing this data set with the

curves in Fig. 14. The center offset for the fourth data set is . 14, the

largest of all the six data sets. This large offset is probably responsible

for the low peaks.

Another unique feature of the fourth data set are the large negative

values for the %Pol at r/R = .2, east of the center. The rough model

fails to predict this sort of asymmetrical behavior for the %Pol data.

The results of the nonlinear regressions on the six data sets are

summarized in Table 2. The confidence limits on e and a are based on

the coupling of the two parameters in the rough model (Snedecor's F-

distribution). A linearized version of the nonlinear model was used

to calculate the approximate 95% confidence limits for e and a-

Initially, both model parameters were allowed to vary with the re-

sults shown as the first iteration in Table 2. From the table one can

see that a changed from data set to data set which is somewhat incon-

sistent for a physical parameter that should be approximately constant
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from one data set to the next. Therefore, a second iteration was de-

vised setting a equal to a , the average of all six CT'S, and letting e

vary. These results are shown in Table 2 as the second iteration.

The final average dielectric constant for all six data sets is shown in

Table 2 as 1. 34±.08. The average standard deviation of slopes is 18°±2°.

Confidence limits are approximately two standard deviations in the same

units as the quantity.

In Fig. 29 the average dielectric constant is compared to those of

previous workers in the field. The effective dielectric constant for the

model (smooth or rough) which gave the best fit to the worker's data is

quoted along with the appropriate error bars. Also note that four of the

measurements have no error bars plotted because no errors were re-

ported by those workers.

The models which fit the data best at long wavelengths are smooth,

while the rough models give the best fit at shorter wavelengths. This

would seem to indicate that the lunar surface is relatively smooth on a

scale of approximately 10 cm and that roughness plays an important part

in depolarizing the linearly polarized emission at wavelengths shorter

s

than 10 cm. The depolarizing effect of roughness can readily be seen

in Fig. 13.

If the high value for the effective dielectric constant obtained by

Clegg and Carter, as shown in Fig. 29, is ignored, the effective di-

electric constant is clearly shown to decrease with decreasing wavelength
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of observation. This effect is possibly due to the inability of the rough

models to adequately account for roughness on the order of a wavelength.

More work needs to be done in developing models for intermediate as

•well as large scale surface roughness.

Another possible explanation for the decrease in the effective di-

electric constant with decreasing wavelength may be that the lunar surface

is layered with a dense, high dielectric constant material underlying a

less dense, low dielectric constant material at the surface. Hagfors

has developed just such a two layered model to account for the microwave

emission data and also the radar reflectivity measurements.

Before such a wavelength dependent model can be used, though, there

needs to be a set of accurate lunar emission measurements taken at

several wavelengths using a complete, consistent rough model with

shadowing included to more carefully define the dependence of the effective

dielectric constant upon wavelength.



APPENDIX A

DERIVATION OF THE BRIGHTNESS TEMPERATURE
DISTRIBUTION FOR A SMOOTH DIELECTRIC SPHERE

The purpose of this Appendix is to derive an equation for the thermal

emission temperature from a point on a dielectric sphere located in free

space, as shown in Fig. 7.

The radius R of the sphere is much greater than the wavelength

of the observed thermal emission so that the curvature of the spherical

surface approaches a flat plane compared to a wavelength. The observer

is normal to the page and the observer is assumed to possess infinite re-

solution. Also, we will require that the observer can only measure

linearly polarized radiation parallel to his plane of polarization. The

plane of polarization makes an arbitrary angle 6 with a reference plane

taken to be the equatorial plane of the sphere.

The angle 9 is measured from the equatorial plane to the point of

—»
emission (point P). The surface normal n at point P makes an angle (3

with the observer's line-of-sight.

The plane of incidence for point P is always defined as the plane

containing the surface normal n and k , the unit vector along the ob-

server's line-of-sight. The plane of incidence as viewed by the ob-

server appears as a chord drown from the apparent center of the disk

(point C) to the point of emission. Note that (3 is measured in the plane

of incidence and therefore cannot be seen in Fig. 7.

78
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The two electric field components of polarized emission perpendi-

— » — » — »
cular to k are shown to be E and E where the "t" subscript refers

t t|| tj.

to transmitted quantities. The "||" and "j." notation refers to quantities

which are parallel and perpendicular to the plane of incidence, res-

pectively. In order to find out what the observer measures, E and

E are resolved along the observer's plane of polarization as

C°S (9 - ' * s i n < e - ' <7 0>

where I E I is the magnitude of the electric field vector along the ob-

server's plane of polarization.

The normal component of the time average energy flow per unit

surface area per unit bandwidth per unit solid angle out of point P is

— > — >

(S • n), given by the time average of the real part of the complex

Poynting vector as

<St . n> =— < | E J > cos pt, (71)

-2 -1 2
in watts - m - Hz - rad where the bracket notation implies a time

average. If Equation 70 is substituted into the above equation, we have

e cos 3

til1
IE |> sin 2(9 - 9 ) + <|E |2> sin2 (6 - 9 )~|. (72)
1 tl' O ' tl1 O J
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Stratton defines the transmission coefficients for emitted energy

parallel and perpendicular to the plane of incidence as (see Fig. 5)

« ~eF~ cos p . < | E . I >
O 1 ' 1'

and

(74)
1 /Te~ cos fi.< I E. I )o i ' 11'

where E. and E. are the incident electric fields parallel and perpendi-

cualr to the plane of incidence, respectively. The angle B. is measured

—> —»

from the incident wave number k. to the surface normal n. The trans-

mission coefficients for the emitted energy are used since the emitted

energy is an observable quantity.

—» —»
Now we can use Equations 73 and 74 to eliminate E and E from

t|| ti

Equation 72 so that

/~ee cos 6-

- /FT" < I E. I I E. I > sin 2(6 - 9 ) + < I E. | 2> T sin (0 - 9 )]. (75)
I) 1 ' 11| ' ' 11 ' O ' 11 ' 1 O J

Since the incident wave arises from thermal emission, the electric

fields are completelyunpolarized or
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Also the incident fields E. and E. are mutually incoherent implying

that

<| E. | |E. I ) = 0. (77)

Now Equation 75 becomes

-* /eeQ cos P- _ 7 r 2 2
<S^ • n) = < I E. I > |T cos (9 - 9 ) + T sin (9 - 9 )1.t z ' i 1 L n 0 1 o j

(78)

The normal component of the time averaged energy flow per unit

surface area per unit bandwidth per unit solid angle inside the surface

toward point P is

/ee cos R., — » — »% o i . — * . 2
< S . . n > = - - - - < | E . | > , (79)

-2 -1 2
in watts - m - Hz - rad and now

(S*. • n") = <S*. • n) [T cos
2 ( 9 - 9 ) + T sin2 (9 - 9 )"]. (80)

t i L 0 1 o j

Since the Moon closely approximates a blackbody radiator at radio

wavelengths, the Rayleigh- Jeans law gives the brightness of point P as

(81)
X

where T is the constant surface temperature in °K, k is Boltzmann's

constant in joule - k° , X is the wavelength of observation in m, and

-2 - 1 -2
B is the brightness of point P in watts - m - Hz - rad
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—» —*
The quantity (S. • n) is also referred to as the intensity of the

incident subsurface radiation on point P. Provided we can neglect

intervening losses in the region between the source of the thermal

radiation and the surface, the intensity is equal to the brightness or

-• -» 2kT r 2 ? ~i
<S • n) =—=- IT cos (9 - 9 ) + T sin (0 - 9 )• . (82)

t , c. L n o j. o J

The received power per unit bandwidth for an antenna which is

trained on point P is (see Chapter II)

w = \ A f [ <S • n) P (9, cp) dO = kT (83)
£ e J J t n y

o
source

-1
where w is the received power per unit bandwidth in watts - Hz ;

P (9 , cp ) is the normalized power radiation pattern; A is the effective

2
area of the antenna in m , and T is the corresponding antenna tem-

9
o

perature in °K. Now let the antenna have an infinitely narrow beam-

width so that Equation 83 becomes

kT A
kT

e a T 2, 2
9 2

o X
[T cos (9 - 9 ) + T sin (9 - 9 )~|. (84)L n o j. o J

However, it can be shown that

Afi = X2 , (85)
e a

so that Equation 84 becomes

. 2
T = T|~T cos ( 9 - 9 ) + T sin ( 9 - 9 )1. (86)

9 L n o x o J
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The difference between T and T is greatest, therefore

T = T!~T cos2 9 + T sin2 9"I, (87)
0 L || j. J

and

T90° = T[T Sin2 9 + T± C°s2 9]' (88)

Two orthogonal polarization positions are now defined for the an-

tenna as (see Fig. 1Z)

PI = 90°, (89)

and

P2 = 0°. (90)

Equations 87 and 88 now become

2 _ . 2T
PI = T[T sin 9 + T cos elf (91)

L II J- J

and

e + T sin2 el (92)
i J

For clarity, Equations 91 and 92 can be expressed as functions of e,

g , and 6 so that (dropping the t subscript on 3)

2T p l ( e , B , 9 ) = TfT ( e , B ) sin2 9 + T (e, p) cos2 el, (93)

and

T p 2 ( e , p , 6 ) = TJ"T ( e , p ) cos2 0 + T ( e , p ) s i n ej. (94)

The above equations now represent the true brightness temperature

for a point at temperature T, located by the angles (3 and 0 on a
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dielectric sphere with a dielectric constant of e.



APPENDIX B

ONE ADVANTAGE OF DISPLAYING DATA AS A
LINEAR PERCENT POLARIZATION

The purpose of this Appendix is to show that displaying the lunar

emission data as a percent of the total polarization, rather than as a

simple difference of polarizations, achieves a higher signal-to-noise

ratio by effectively decreasing the amount of noise present in the data.

The final polarization signals (after averaging to reduce receiver

noise) for the vertical and horizontal polarizations are S (x.) and

S (x.), respectively, where
AT Li \

SPl (xi )--TaPl (xi ) + nl (Xi ) ' (95)

and

SPZ^ ^ TaP2(xi) + V*i>- (96)

The noise free polarization signals for the Moon are given by T (x.)
cl.t"^ •!• 1

and T (x.) (previously derived and written as Equations 61 and 62 in
3,x"^ £* 1

Chapter V). The receiver noise, model errors and other sources of

error in both the vertical and horizontal polarizations are represented

by n (x.) and n (x.), respectively. The independent variable x. repre-

sents the i data point in the time or angular domain and conversion

between the two domains is accomplished by knowing the velocity of the

Moon with respect to the antenna beam.

The mean and variance of n (x.) and n (x.) are
•*• 1 £ 1

85
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< n . ( x . ) > = <n 2(x.)> = 0, (97)

and

(n^x.)2) = o-j2; (98)

<n2(x.)2> = a2
2. (99)

where the bracket notation implies a finite time average with a. and

a being unknown quantities. Also n (x.) and n (x.) are assumed to be
L* 1 1 L* 1

jointly normal random variables that are uncorrelated with each other or

(n^x.) n2(x.)> = 0. (100)

This assumption of normality is not unreasonable in most cases since

there is a tendency for n (x.) or n (x.), a total error due to the sum of
11 £ 1

many individual sources of error, to be normally distributed because

of the Central Limit Theorem.

Suppose we wish to display the lunar data as a difference of two

orthogonal polarizations given by AS(x.) as

.) = Sp2(x.) - Spl(x.), (101)

or

i> = TaP2(xi> ' TaPl(xi)

The postulated model is given by AT(x.) as

AT(xi} =

Equation 102 now becomes
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AS(x.) = AT(x.) + n2(x.) - n^x.). (104)

Now if the postulated model is least squares fitted to the data and

if the postulated model is the true model, then S , the residual mean

square, is

n

} \ AS(x.) - AT(x.
i—> I- i i

S2 = — , (105)
n - 2

which further simplifies to

n

(-06)n.2 .

The factor of n - 2 in the denominator comes from the fact that there

are n data points with 2 model parameters to be determined from the

regression or n - 2 degrees of freedom.

If n is large then the sum in Equation 106 approaches a time average

or

n

= <[n (x ) - n (x ) ] 2>, (107)
C i 1 1 1 ,il ~

and Equations 97 and 100 can be used to simplify Equation 107 to read

= <n 2(x.) + n 2(x.)> = a,2 + a_2 . (108)
•L X Li \ A C>
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In practice, the difference of two polarizations, AT(x.) is folded

about the center of the lunar disk and averaged because the model ex-

hibits symmetry about the lunar center. Such a process has been done

by Moran , and others. ' The effect of folding and averaging

is to reduce the residual mean squares by a factor of 2 so that

2 2
2 CT1 °2

5fold = 2 • <1 0 9>

The standard deviation of the residual is obtained by taking the

square root of residual mean squares or

(110)

Also if a. = a = a' then S. , ,
1 2 fold

This result will be used later for comparison with a new method for

displaying the lunar data as a true percent of the total polarization

signal.

First, the average polarization signal will be defined as

T (x.) I TaPl(xi) + TaP2(Xi> (112)
av i — ,

and the percent polarization is taken to be

S ( x ) - S ( x )

*Pol
8

(xi) • S (x) + S (x) ' (U3)s i S ( x . ) + Sp2(x.)
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Equations 95, 96, 103, and 112 may be substituted into the above ex-

pression which simplifies as

AT(x.) + n (x.) - n (x.)
%Pol (x.) = ' . * \ ' ' , . . (H4)

si 2 T (x.) + n (x.) + n (x.)
av i 1 i 2 i

If the signals have a sufficiently high signal-to- noise ratio, then

the condition that

2T (x.) »n (x.) -Hi (x.), (115)
3.V X J- 1 £t 1

is satisfied for all x. on or near the lunar disk. This condition will not
i

be satisfied away from the disk of the Moon since the noise would dominate

over the Moon's signal. We are, however, only interested in the data

across the lunar disk so that Equation 115 is always satisfied and

Equation 114 becomes

AT(x.) + n (x.) - n (x.)

av i

The postulated model is defined as

A T ( x )
% P o l < x ' ' -T i av i

and the residual mean square due to the least squares regression of

the model to the data is

n

[%Pols(x.) - %PolT(x.)]'
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Using Equations 116 and 117 to simplify the above expression -we have

2 T (x.)
av i

If n is large then the above summation approaches a time average and

n (x.) - n (x.)

2T (x.)
av i

The squared term in the bracket may be expanded and simplified by using

Equation 100 so that

2 ]_ / n, (xj + n0(xj
S% =4

T (x.)
av i

In order to evaluate the above equation further, we must make cer-

tain assumptions about T (x.), the average polarization signal. The

lunar polarization data in Figs. 17, 19, 21, 23, 25, and 27 can be

approximated for . 8 of a lunar radius on either side of the apparent

center by a simple linearly varying function, or

T (x.) = mx. + 1, ( - . 8 < x . < . 8 ) , (122)
a v 1 1 — i —

where m is the slope of the observed temperature distribution and x. is

now measured in units of a normalized lunar radius. Also note that the

ordinates have been normalized to unity at the apparent center. Equation

121 now becomes
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2 i AiX^'VS)s% =\\ -^~-—r~L >• (123)
'° ^ \ I _L 1 \^\ (mx. + 1)

If we replace the time average brackets by its integral representation

then

21 1 r n i (xi) + n2 (xi>
so; = 7-77TT \ - — ~ T-1- dx-- < 1 2 4>% 4 2 ( '8) _J

g ( m x . 4 l ) 2

where the finite time average is carried out for 80% of the lunar dia-

meter. Evaluation of Equation 124 is accomplished by noting that n (x.)

and n (x.) are random variables that can be replaced by their variances
Ci 1

and taken outside of the integral and

2 2
2 CT1 Q2s% = ——T-- (125)

/0 4(1 - .64m )

Note here that the slope never exceeds ±. 4 for all the data sets obtained

so that a worst case for the residual mean squares would be

2 1 2
S% = 3.5904

and the standard deviation is

o 2 +c> 2

7.590? •

Comparing the above expression with Equation 100 we see that



<128'

for - . 8 < x. < . 8 and for m = ±. 4 (worst case).

Displaying the lunar polarization data as a percent polarization

now achieves a smaller standard deivation of the residuals as opposed

to the folded difference of polarizations for the conditions stated herein.
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