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Preface 

The work reported herein was done by the author during several  periods 

of time. 

ployed at Lincoln Laboratory* in conjunction with a, source measurement 

program. 

Summer of 1965 under the support of The University of Texas Joint Services 

Contract, AF-AFOS-766-65. 

The original ideas were developed in 1964 by the author while em- 

The material  was refined and expanded considerably during the 

It appears in this report  further expanded. 

The approach to the source measurements problem which is critirciz%d 

and improved in  this report  is that of Baars ,  e t  34. t Their work was done 

in the interest  of comparing nvmerous source measurements which were 

available in the l i terature.  Their approach, our "Method I, ' I  was used to 

correct  the various measurements for  beam size effects ts allow comparison. 

Since they did not have access  to the original data, their approach was the 

only possible one and was valid, appropriate, snd not subject to criticism. 

Their resul ts ,  however, have been widely used in source measurements and 

i t  is this use which we feel i s  not optimal. 

The most commonly used method of estimating source strength involves 

mean-square-fitting a Gaussian curve to the data. This approach requires a 

:*Operated by Massachusetts Institute of Technology. 
the U. S. Air Force.  

+J. W. M. Baars ,  P. D. Mezger, and H. Wendker, "The Spectra of the Strongest 

This work supported by 

Ncm-thermal Radio Sources in the Centimeter- Wavelength Range, ' I  Astrophysical 
Journal, Vol. 142, pp. 122-134 (1965). 

ii 



computer and i s  probably equivalent or  superior to the method developed in this 

report. 

the fact that our method is subjective to some extent. 

It is difficult to compare our method with mean-square-fitting due to 

Our method is aimed at 

the hand reduction of data, while mean- square-fitting i s  best suited for complete 

computer reduction, 

The author would like to acknowledge the aid of Jim Gort in producing 

Figures 5 and 6 ,  and thank John Davis for reading the draft with ca re  and 

making numerous helpful suggestions. 

... 
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I. INTRODUCTION 

In the analysis of radio source observations, one frequently introduces 

idealizations. An idealization which i s  commonly used when the source size 

i s  comparable to the antenna's beamwidth i s  that both the source brightness 

distribution and the antenna's power pattern a r e  adequately represented by 

Gaussian functions. This practice i s  founded on several  considerations. For  

one, the respective functions (in so far a s  they a r e  known) often resemble 

Gaussian functions to a high degree. 

being the convolution of the antenna pattern with the source intensity, tends 

to be Ciaus sian in shape, since multiple convolutions tend (mathematically) 

toward the Gaussian form. 

sentation which has a minimum number of parameters  and offers many mathe- 

matical niceties. 

For another, the antenna response, 

Finally, the Gaussian form allows one a repre-  

However, the simplifications which a r e  suggested by the assumption of 

Gaussian forms,  e. g., representing the antenna response by only the peak and 

width of the response, can lead to an oversimplification of the problem. 

oversimplification can lead in turn to a neglect of the advantages which this 

model offers. 

of the Gaussian assumption. 

benefits of the Gaussian assumption. 

pointing e r r o r s  and thus view the antenna temperature a s  a statistical average. 

In Section 111, we consider the problem of estimating source strength. 

This 

In this report ,  we reexamine the basis fo r  the common utilization 

In Section 11, we develop in a tutorial manner the 

We introduce the statistical effects of 

Here we 

1 
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introduce the receiver noise as a stochastic process  and t reat  the problem as 

one in statistical sampling. The conventional method of determining source 

strength (Baars ,  Mezger, e t  al) is examined and criticized on several  counts. 

Another method i s  examined and found to offer several  advantages when used 

with discretion. 

mations of source size a r e  made. 

receiver output a r e  examined. The distorting effects of the filter a r e  then re -  

lated to the source strength problem and corrections a r e  given. In Section VI, 

we summarize our results and discuss the application of similar techniques to 

problems where the Gaussian as sumption seems unjustified. 

In Section IV, we review briefly the basis upon which esti- 

In Section V,  the effects of filtering the 

11. ELEMENTS O F  A SOURCE MEASUREMENT 

A. Antenna Temperature 

The fundamental definitions of spectral  intensity, antenna effective a rea ,  

and antenna temperature combine to yield 

T (62') =-  I(n) A@' - hz) dh2 a 2k 
4T-r 

where 

hz'  

hz = hz(e,cp), a point on the celestial sphere 

I(Q) = the intensity of the source (wat ts /cps/(meters)  / 

= Q'(0  ', c p ' )  is the direction in which the antenna is pointed 

2 

steradian) 
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2* = the mi r ro red  antenna effective a r e a  function (meters)  

= antenna temperature (OK) T (0 ' )  a 

and k = Boltzmann's constant (Joule/ OK). 

In cases  of interest  in this report ,  the integrand of Equation (1) i s  negligible ex- 

cept in a region near the source. Hence we a r e  justified in treating the integral 

a s  performed on a plane. Let us introduce a pseudo-orthogonal co-ordinate 

system centered on the source position. Our two coordinants, x1 and x denote 
2' 

right ascension and declination, respectively, and do not form a t rue rectangular 

grid since all circles of constant declination except the celestial equator are 

small  c i rc les  on the celestial sphere. Nevertheless, in the region of the source 

this type of representation should be adequate, and Equation (1) becomes 

accordingly : 

m m  

Thus, the antenna temperature i s  proportional to the two-dimensional convolution 

of the effective a r e a  and the source intensity: 

I 8  A, where 8 indicates the two dimensional convolution. 
1 

a 2k 
T = -  

::The m i r r o r  image of the pattern i s  used to obtain a convolution relationship 
directly without evoking symmetry properties in either pattern o r  source. 
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€3. Effects of Pointing E r r o r s  

The mapping of antenna temperature in the region of the source is most 

commonly done by scanning the antenna across  the region at  a constafit rate. At 

a predetermined time one knows the position on the celestial sphere at which 

the antenna i s  pointed; thus, one knows the antenna's pointing direction for all 

time. Usually, one averages many such scans to reduce the effects of receiver 

noise. E r r o r s  in pointing a r e  characterized by the fact that a t  the appointed t ime 

the antenna i s  possibly not pointed a t  the desired position on the cklestial sphere, 
I 

but i s  likely in e r r o r  in both right ascension and declination. 

which by definition a r e  unknowable except in some statistical sense,  result  in 

that the averaged map of the desired a rea  i s  "smeared out" by the pointing errOTs. 

These e r r o r s ,  

The best  one can do i s  to estimate the smearing effect by introducing an  assumed 

probability distribution of the e r r o r s  and performing a statistical averaging of 

their effect. 

ascention and declination, respectively, is f(x , x ), the average antenna 

temperature measured will be 

That is, if the probability density of e r r o r  of x and x ' in right 
1 2 

// /I 

1 2 

c o c o  

Since we would expect that bias in the pointing would have been removed (or 

would be observable if an entire region i s  mapped) and since the e r r o r s  would 

be symmetrically distributed, Equation (3 )  i s  equivalent to another two dimen- 

s ional convolution: 
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1 
= T @ f  =-  163 A @  f ( 3 4  avg a 2k T 

In words, the average antenna temperature is  proportional to the two-fold con- 

volution of the source intensity and the antenna effective a rea  and the distribution 

function of the pointing e r ro r s .  It is in the evi$uation of this mutiple convolution 

that the Gaussian forms a r e  introduced. 

C. The Gaussian Form 

The Gaussian curve is characterized by two parameters ,  conveniently 

If a is the peak the peak and the width between the peak and the half peak point. 

value and w is the width defined above, the form of the function is 

-&n 2 
g(x) = a exp - [(.en 2 ) ( ) ‘ j .  Since e = $, this can also be 

written as 

, although the first form is more  convenient 

for calculations. In our case we must use a two-dimensional funktion, having 

possibly different widths in the two dimensions. 

In the function g(x x ) the peak occurs at x = x = 0 and the half-peak curve 
1’ 2 1 2  

x 2  x 2  

1 2 
is the ellipse described by the curve ($) t (2) = 1. But this is not the 

most general Gaussian form since is assumes the ellipse to be aligned with 
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the r. a. -dec. axes. 

be oriented a t  an arbi t rary angle. 

our notation. 

The most general form should allow for  the el ipse to 

To introduce this facility, we need to change 

We now t rea t  the coordinapts, x and x a s  a column matrix 
1 2 '  

X 

= [xlj, and Equation (4) becomes 
2 

- 

The superscript  t indicates the transpose of the matrix and the superscript  -1 

indicates the inverse matrix. We introduce the inverse matrix at this stage 

in order to simplify notation in later developments. We now can orient the 

axes by introducing 1' x2 half-peak ellipse a t  an angle cp with respect to the x 

the following orthogonal transformation on the square matrix: 

where 

= [cos cp-sin 'p 

- Lsincp cos cp 

Equation (5) now represents the most general tvo-dimensional Gaussian form. 

Some other results which will be needed later can best be stated here. Let us 

abbreviate Equation (5) to the form: 
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where 

The two-dimensional Fourier transform of g(x) is know to be - 

where y = and det (A) indicates the determinant of A. A useful special - - 
case of Equation (6)  is that it q v e s  us  theeolume under g(x): 

D. The Gaussian Model Introduced 

We a r e  now in a position to present the source intensity, antenna 

effective a r e a  and the pointing e r r o r  probability distribution as Gaussian 

functions. 

(1) The Source Intensity - Let  us say that the source is adequately 

characterized by a Gaussian fo rm bf volume S, the source strength, and a 

half-peak ellipse of semi-major and semi-minor axes of w and w 1‘ 2’ 

pectively, with the major axis oriented at an angle cp with respect to the 

right ascension axis. Such a function is of the form 

res- 

1 



I(x) = dn 2 S exp {-Xt - -  A - ~  - x} , 
nw w - 

1 2  

where 

w2 0 

- t n 2  -1 Qt  [ o w2J-1 L sin cp cos cp 
2’ @ and g1 = 

1 A =- 
1 

The peak value of I(x) is chosen such that - 
m m  

I(x) - dx1dx2 = S 
-m -CJ 

a s  can be verified from Equation (6a) and the fact that 

2 -  2 2  

(2)  The Antenna Effective Area - The effective a rea  of the antenna 

i s  proportional to the power gain pattern of the antenna. Within the scope of 

our Gaussian model,  we can characterize it by 

where 

= maximum effective a rea  of antenna 
e 

A 

1 - B -- - 
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e l ,  e 2  = semi-major and semi-minor axes of half-power 

ellipse of gain pattern. * 

cos cp - sin “21 [sin’pz cos cp 2 
- - m -2 2 

= angle between right ascension axis and major axis ‘p2 

of half-power ellipse of antenna pattern. 

2’ ::A more general way to define the antenna beam would be to define 6 and 6 
1 

the beamwidths, such that 

4&n 2 

e max 

2 - A S n 2  e l e 2  -*- - 1, = l-r 

where is the main lobe efficiency of the antenna. defined as B 

41-r 

An additional equation defining 6 

minor semi-diameters of the half power ellipse is required. 

and 6 1 2 to be in the ratio of the major and 

For  the ideal 

beam of Gaussian shape the two definitions a r e  equivalent. Adopting the 

later definition would allow the simplification of a number of equations in 

the following, although the equations a r e  not necessarily clarified by this 

simplification. 
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In words, we have allowed for an unsymmetric pattern oriented a t  an arbi t rary 

angle with respect to the right ascension axis. Some care  would have to be 

exercised in  the use of this expression if  the antenna was controlled by an 

az-el mount, since in that case the angle cp would in  general vary with time. 2 

If the antenna beam is symmetric (8 = 8 ), the preceding proviso is irrelevant. 1 2  

It should be noted that the 8 values a r e  not half-power beamwidths, but rather 

are one-half the maximum and minimum half-power beamwidth of the antenna 

pattern. 

(3)  Pointing E r r o r  Probability Distribution - The model adopted here  

i s  the Gaussian distribution. While it would not be difficult to t reat  r. a. and 

dea e r r o r s  as correlated,  this seems unnecessary, and we chose to t reat  

e r ro r s  in the two directions a s  uncorrelated and of equal variance: 

f ( 2 )  = - 1 exp {-xt - -  c - ~  - x} 2 
2na 

( 9 )  

where 

Here,  we have denoted the rms pointing e r r o r  in r. a. and dec. a s  0 ;  the overall 

r m s  pointing e r r o r  would be no. We have thus treated e r r o r s  a s  uncorrelated 

from scan to scan. 

E. The Solution 

We a r e  now in a position to perform the double convolution in 

Equation (3a). 
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(3b) 

The convolution is evaluated with the least  difficulty if the Fourier transform of 

Equation (3b) i s  taken, since the convolution becomes a multiplication in the 

transform domain. The Fourier transform of Equation (3b) can, therefore, 

be expressed through the use of transform pair ,  given earlier (Equation (5a) and 

(6)) a s  

n S A  e1e2 
e exp {-* yt (A t + s)q 1 (. JG) exp (-4 lt gx}) = 2k &en 2 - -  

( 3 4  

The antenna temperature can now be expressed a s  the inverse t ransform of 

Equation (3c): 

It is to be noted that the average antenna temperature is Gaussian in form and 

can therefore be characterized by only four parameters ,  a peak value and the 

parameters  describing the half-peak ellipse. These parameters  a r e  not 

relevant to our development a t  this stage and will not be discussed here. One 
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property of this function can be easily obtained, however. The total volume 

under the function is given by the Fourier transform with zero arguments: 

which can be written 

w m  m m  

In words, the integral of the antenna temperature depends upon only the source 

flux and the integral of the antenna's effective area, which is defined to be the 

antenna efficiency. 

be derived from fundamentals and depends in no way upon the Gaussian assumption. 

It will be shown later in this report  that this property can 

111, SOURCE STRENGTH MEASUREMENTS 

A. Introduction 

In this section we shall discuss the problem of estimating the strength 

of a radio source from a set of measurements on that source. W e  say "estimate" 

because there  is inherent inaccuracy in any such measurement . .  Even if we 

ignore instrumental e r r o r s  (nonlinearity, calibration e r r o r  , etc. ) and accept 

the Gaussian assumptions we still have to acknowledge the effects of system 

noise. 

A se t  of measurements would consist of a se t  of data points, say, 

T (x) where T is one's value for the response of the antenna looking at d -  d 



1 3  

some point on the sky x , i The discrete nature of the data can a r i s e  either in 

the data recording output of the receiver a s  in a digital recording system, or  

i t  can be introduced by the observer fo r  the purpose of averaging data taken 

in analog form. We shall assume that the data value differs f rom the actual 

antenna temperature by a te rm characterizing receiver noise: 

T (x') = T  (x,) t T 
d -i avg -1 ni 

Here we conceive of T 

following properties 

a s  a set  of Gaussian random variables having the 
ni 

2 
E [ T  .] = O  ni E [ T  ni ] =(AT r m s  >" 

where E [ * ] denotes the statistical expectation o r  average, The value of 

will depend in a well-known manner upon the system temperature, 
rms AT 

the bandwidth, and the integration time going into that particular date point. 

It i s  conceivable that different data points have different accuracies,  awing 

to different averaging t imes,  but we shall not consider that possibility in the 

following. Fur thermme,  we shall consider T and T a s  uncorrelated, i. e. , 
ni nj 

This i s  not strictly t rue if a low pass filter i s  used in smoothing the data, a s  

is common in analog recording. This difficulty will be discussed in the con- 

text where the above property i s  used. 
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The object of a source strength measurement is to take a set of data 

and estimate the parameter ,  S, in Equation (7) given that one knows the antenna 

properties given in  Equation (8) and the pointing accuracy as used in Equation 

(9). We shall discuss two methods. The first, which we will for convenience 

call Method I, characterizes the response by its peak value and i ts  width be- 

tween half-peak values. The second, Method 11, seeks to exploit the integral 

property presented in  Equation (1 1 ) .  

B. Method1 

1. Described. 

In this method one locates the peak of the source and then scans 

it in two orthogonal directions, normally the directions of constant right 

ascension and constant declination. This results in  two profiles of the 

source. The source strength is then computed as follows: 

a. Estimate the peak response (T’.). This depends upon a sub- 
P 

jective estimation and involves, say, three or  four data points near the peak 

of the response. 

b. Divide the peak value by two and estimate the width between 

t h e  positions where tJ is response falls below the value on the two profiles. 

I Call these two widths 2fj and 2p ’. 
1 2 

c. Compute source strength by the formula. 
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2 .  The Validity of the Method. 

We can examine the suitability of Equation (13) by using Equation 

and p should be in the absence of noise. I 

2 (10) to drive what the values of T , 
P 

We see no way to evaluate the effects of noise on the estimate of S owing to the 

subjective nature of the method. 

In the absence of noise, we determine that one should obtain by  

the above procedure: 

S A  0 . 0 -  e 1 L  1 - - 
det (A t B t ‘ - - -  Tp 2 4,n 2-k 

I 

8, I such that [ p , ’  O]  [A - - -  t B t C] -’[’: ] = 4 n 2 ,  and 

p2 ‘such that [0 B Z 1 ]  [At B t C1-l [pz,] = t n  2 

Substitution of the above values into Equation (13) yields 

12 where D M 7 (8, 

of the source strength when the bracketed te rm vanishes. 

for this happening a r e  that the beam and source a r e  symmetric, o r  that the 

beam i s  symmetric and one takes profiles along the major and minor axes of 

the source. 

t 821)2  > 0. Equation (13) proves to be an unbiased estimator 

Sufficient conditiQns 

One observes that one needs to determine more  than the center 

of the source in order to initiate a valid measurement. One needs in  addition 
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the orientation of the maximum width of the sciurce so that profiles can be made 

along and across  that direction. The use of right ascension and declination scans 

will tend to underestimate the source strength except in the fortuitous case where 

the source eccentricity is aligned with the line of constant right ascension o r  

constant declination. 

of the source, as would be the case in the observation of most planets, one can 

get an unbiased estimate of the strength from a right ascension profile, pro- 

vided the antenna beam i s  symmetric. 

When there is  - a pr ior i  knowledge of the circular symmetry 

3. Other Comments on the Method. 

a. 

b. 

The greatest  appeal of this methad i s  perhaps i ts  simplicity. 

The method i s  subjective to a large degree. There i s  no 

guarantee that independent observers would derive the same result. 

same reason, i t  i s  difficult to assign an accuracy to the result. 

For  the 

c. The resul t  depends principally on the data points near the 

peak and near the half-peak points. 

This i s  all the more unfortunate if one observes the source sufficiently to 

determine i ts  orientation. 

The r e s t  of the data a r e  largely ignored. 

d, An e r r o r  in judging the peak of the response results in a 

corresponding (and partially compensating) e r r o r  in determining the "half- 

peak" widths. It i s  easy to show that if the peak is overestimated by 6 per  

cent then the strength will be underestimated by .446 per cent if no e r r o r s  

a r e  made in judging the widths. 
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e. The final result  is very 

This i s  especially the half-peak widths. 

sensitive to e r r o r s  

true when circular 

made in judging 

symmetry i s  

assumed and the estimated width i s  squared in  the flux computation. 

f .  Pointing e r r o r s  do not affect the estimate, subject to our 

assumption that they a r e  isotropically disturbed. 

g. 

noted above, there is no reason to believe that this methdd biases the resul ts ,  

i. e . ,  no systematic e r r o r s  a r e  in principle introduced. 

true if  a low pass filter is used, as will be discussed in Section IV. 

Aside from the effects due to source and lcieam asymrnetrics 

This i s  no longer 

C. Method I1 

1. Rationale. As stated ear l ier ,  Methtrd I1 is  based on the integral 

property presented in Equation ( l l ) ,  viz . ,  that the integral of the response i s  

independent of the size of the source. 

of continuous functions, and summations must ultimately replace al l  integrals. 

Nevertheless, for the sake of argument, le t  us assume that integrals can be 

performed. 

Of course,  the data a r e  only samples 

t -1 
Let E denote an ellipse where x (A t B t C) 

We substitute Equation (10) into Equation (12) and integrate 

x < v ,  where v is a - - - -  
positive number. 

the result  over E: 

E 
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- V  
The bracketed te rm has the value rr(1 - e 

arranged to read: 

), and thus Equation (14) can be re- 

(14a) 

When Equation (12) was introduced, T . (x)  were viewed a s  a set  of random 

variables. 

ni - 
In the present context where we a r e  considering the equation a s  of 

a continuous nature, we must conceive of T (x) as a random process.  The inte- 

gral of T i s  therefore a random variable and thus the left side of Equation (14a) 

must also be considered a random variable, which we have denoted S 

n-  

n 

This 
est '  

is our estimate of the source- strength. Since E[Tn(x)] = 0, we see that 

that i s ,  S i s  anunbiased estimator of the source strength. 
e s t  

The standard deviation of S will depend on the spacial correlation 
e s t  

properties of T (x). Before we assumed that T were uncorrelated from point 

to  point. 

T (x) will be a two-dimensional impulse. Under this assumption, the standard 

deviation of the integral of T 

a rea  of E, i. e . ,  proportional to the square root of the number of points included 

in the integration. 

this relationship i s  still  approximately t h e  if the dimensions of the ellipse 

n-  ni 

If we extend that the continuous case,  the autocorrelation function of 

n -  

over E i s  proportional to the square root of the 
n 

In the event that the noise i s  correlated over some length, 



a r e  large comparable to the correlation length. As we shall see,  this latter 

condition will always be true inpract ice .  So in either case: 

CT noi s e CY 

E 

the latter proportionality following from the definition of E. W e  now can state 

that par t  of the standard deviation of S which comes solely from the noise 
es t  

term varies  as  

1 - 
V 2  

1 - e  
0 CY Sest - V  

The right side of Relation (15b) i s  plottec in Figure 1, ant 

minimum f o r  v = 1.25. For that value e = .286. 
- V  

it is seen to be 

In words, Method II i s  rationalized a s  follows. The volume under the 

response i s  proportional to source strength. However, one cannot integrate 

the entire response because a s  one gets far away from the peak one gets less  

and l e s s  signal while the noise continues to contribute. Thus one integrates 

over that region where the response i s  greater than a certain fraction of the 

peak response and corrects  f o r  the signal omitted. 

to be 2870, the e r r o r  due to receiver noise i s  minimized on the average. 

If the fraction is selected 

Integratioe of the data also has the effect of reducing substantially the 

effects of misjudgment of the response widths. Of course,  if the entire response 

were integrated, no estimate of the response width would be introduced, since 
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no correction would be needed, This is inadvisable, as we have shown, because 

of the degrading effects of receiver noise. Thus, one must estimate the response 

widths of the response in order to determine the ellipse of integration (E) and.if 

the widths a r e  misjudged the correction factor will be in e r r o r  for the ellipse 

selected. In other words, one would look at  the response,  estimate the center 

of half power ellipse, i ts  orientation, and i ts  major and minor axes. All of 

these parameters  can be in e r r o r  due to receiver noise. 

to take the estimated ellipse, multiply i ts  dimension by- and integrate 

the data, a s  in Equation (14), over that ellipse, say, E'.  

correct  ellipse, the bracketed t e rm in Equation (14) no longer has the value 

stated and Equation (14a) must be modified to read. 

Still, one would have 

V 

m 
If E '  i s  not the 

2 t n 2 k  Td dxldx2 = E '  s =  
rr(1 - e-') 

est  - V  

) E'  IT A 6 , e 2 ( l  - e 
e 

The expected value of S 

A f i r s t  order  expansion of the statistical expection of Equation (16) shows that 

will, of course,  be sensitive to the e r r o r s  in E'. es t  

the average value of our estimation is not sensitive to f i r s t  order to e r r o r s  in 

the location and orientation of E ' ,  but is biased bnly by e r r o r s  in size in the 

following manner: 
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where A B ,  and A B 2  a r e  the e r r o r s  made in estimating p and B 1 2' respectively. 

This expression can be compared to what similar e r r o r s  would introduce into 

Equation (1 3) .  

When the te rm within the bracket i s  compared with the corresponding t e rm in 

Equation (16a) one sees that Method I1 reduces the effects of misjudging the re -  

sponse widths by a factor of ve-'/2(1 - e-') over Method I (see Figure 2). 

the point which minimizes the receiver noise contribution, ( v  = 1.25), this 

factor has a value of 0.250, and decreases with increasing v .  Thus, cne can 

At 

reduce the effects of size misestimation by integrating one more of the response 

(increasing v). 

We conclude that in selecting the value of v one must establish a com- 

promise between minimizing the respective effects of receiver noise and size 

e r ro r s .  In view of the broad minimum shown in Figure 1, we feel that v = 2.8,  

which corresponds roughly to an ellipse of twice the dimension of the estimated 

half power ellipse, i s  a good compromise value. 

here  that this o r  any reasonable choice of the integration a r e a  justifies the 

assertion underlying Relation (15a), namely that the dimensions of the integration 

a rea  a r e  la rge  compared to the correlation length of the receiver noise. 

It i s  appropriate to point out 

Any 
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measurement where this were not t rue would be worthless by any method of 

data analysis since all but the lowest spacial frequencies of the response would 

be rejected by such a filter. 

2. Method I1 Described 

The flux computation must be developed from the discrete data. 

The following is merely the discrete version of the procedure described in 

the previous section. 

a .  Estimate the center of the response, the orientation of the 

major axis of the half-power ellipse (cp ) and i ts  major and minor semidiameters, 

B ,  ' and B 2  I ,  respectively. 

of the coordinant system, write down a Gaussian function having the estimated 

half power ellipse: 

3 

Considering the center of the ellipse to be the origin 

where 

-3 m =  [sincp3 cos cp 

b. 

e. 

Double the size of the half-power ellipse (v = 2.77). 

Let x. stand for the position of the i 
th 

data point within that 
-1 

ellipse, N points in .all. 
a+ 

d. Equation (12) i s  now summed over all points within the 

ellipse and divided a s  in Equation (14a). 
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Again, we view S a s  a random variable. Defined a s  in Equation 
est  

(17a) i t  has the following statistical properties, assuming no bias in width 

e r rors :  

where (J 

(17c) follows from the assumption that e r r o r s  in judging response widths a r e  

= r m s  e r r o r  in judging response width (an estimate will do). Equation 
B 

statistically independent of each other and of the receiver noise. 

3 .  The Case of Circular Symmetry 

The preceding discussion is  based upon the premise that one has 

a two-dimenk'ional plot of the antenna response. In the event that one has valid 

- a priori  knowledge that the response will be symmetric, as when the source is 

a planet or  is known to have dimensions much smaller than those of the antenna 

beam, it is possible to make a valid flux measurement with one-dimensional 

data, i. e . ,  with only the right ascension prdfile. The approach developed 

above can be used in such a measurement, with the following differences: 
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a.  One must assume, within a certain e r r o r ,  that one is 

scanning across  the center of the source on the average. Other than that, 

random pointing e r r o r s  do not bias the result, 

b, Relation (15b) becomes 

1 - 
Y 4  

cu- 
es  t erf (v  2 ,  

S 
0 

where e r f (  ) is the e r r o r  function. The standard deviation has a minimum 

at  v = 1. 0, corresponding to an integration length of about 1.2 times the 

estimated half-peak width of the response. 

also a rather broad one (cf. Figure l ) ,  and the integration length can be ex- 

However, here  the minimum is 

tended in the interest  of reducing the effects of e r r o r s  in the estimated re -  

sponse width. 

c. The form of the estimated Gaussian will be 

where p ' i s  one half the estimated half-peak width. 

gration of this function removes only one factor of B ' and the resultipg flux 

value i s  sensitive to  e r r o r s  in B '  to f i r s t  order.  

A one dimensional inte- 

While this i s  better by a 

factor of two than the result  obtained with Method I in the case of circular 

symmetry, i t  still  constitutes an argument for  taking data in two dimensions 

even on sources of known symmetry. 

With these differences in emphasis, Equation (17a) i s  st i l l  an 

In this case,  the standard deviation unbiased estimator of the source flux. 
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of the estimate would be approximately 

IV. SOURCE SIZE MEASUREMENTS 

One feature of a source which is of interest  is its size. The measure- 

ment of source size is considerably more difficult than that of source strength 

for  the following reasops: 

1. The size of a source can be measured well only by antennas 

whose beam dimensions a r e  comparzble to the source 's  angular 

dimensions. For strength measurements,  any antenna can be 

used s o  long as  confusion i s  not present. 

The estimate of source size is strongly influenced by random 

pointing e r ro r s .  This is all the more  crucial if the source is 

smaller than the beam. 

Even when one has a good knowledge of pointing accuracy, the 

estimated source s ize  is strongly affected by e r r o r s  in judging 

the response widths. 

source i s  near the limit of the antenna's resolving ability. 

It is not our intention here  to propose an elaborate method fa r  estimating 

2 .  

3. 

As above, this is especially t rue if the 

the source width from a given response. 

the basis for the common method in use. 

We shall be content ra ther  to review 
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The parameters  describing source size, within our assumed Gaussian 

model, a r e  w and w the semi-major and semi-minor axes of the source 

half-power ellipse. These parameters  a r e  embedded, along with five other 

parameters ,  in the exponent of Equation ( lo ) ,  the response. 

1 2' 

The half-power 

ellipse of the response i s  described by the equation 

t 
x ( A t  - -  

The semi-major and 

to  the characteristic 

semi-minor axes of this ellipse 

1 

$en 
numbers of the matrix - 2 ( A +  

(B, and B ) a r e  related 

B + GI-'. Conventional 

2 

techniques yield: 

p l = $ { w p y w  2 2 2  2 2  + 6 , t 4 & n 2 a  2 f 
2 

2 

- w2 - e2) 2 2  - 2 ( W l  - w3(ef - 8 3  [ 1 - cos 2 (tp, - 'pz)]]l'z} 
[(wf + 0; 2 

The well-know relations, 

2 2 
= w 2 t 6  t 2 t n 2 o  and 1 1 

2 2  2 
t 0  t 2 d n 2 o  

2 
$2 = w2 2 

follow if  any of the following a r e  true: 

2 2 
a. 

b. 

Source symmetric (wl = w2) 

Beam symmetric (e1 = e2)  2 2  

ll = rt - then 6 and 9 change roles.  
2 '  1 2 c -  cp1 - cP2 = 0 (If'P1 - cp2 
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In words, if the axes of the source and beam ellipses a r e  

aligned, the parallel  semi-axes add to the Pythagorean 

manner of Equations (18)). 

Equations (18) can be used to estimate the source widths since 8 1, Q 2  and o 

a r e  known and 9 

to note that, so far as resolving ability is  Concerned, the pointing e r r o r s  

effectively broaden the beam in the manner 

and p, can be estimated from the response. It is  interesting 1 

For example, isotropic pointing e r r o r s  of 1'.  0 r m s ,  broaden a 4 ' .  0 (half- 

power width) to an effective 4'. 33.  

do not seriously impair the resolving power of an antenna, although, of course,  

the correction becomes significant when pointing e r r o r s  a r e  comparable to 

source size. 

statistically and that one must be averaging a sufficient number of scans to 

allow much credence to these results.  

It i s  seen that appreciable pointing e r r o r s  

It should be recalled that we a r e  treating pointing e r r o r s  

V. THE EFFECTS O F  FILTERING 

Some sor t  of filter must be used prior to the recording of the data. In 

Rarely digital data systems, a "perfect" integrator i s  most commonly used. 

is  significant distortion thereby introduced, since in a digital system one is 

normally recording and processing data automatically and thus is not directly 

concerned with the data rate.  Not so in analog systems. Here one i s  normally 
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using a simple low pass filter and, since data a r e  to some extent hand-processed, 

one tends to tolerate some distortion in the interest  of reducing the data rate. 

The resulting distortion does not impair the accuracy of the measurement so 

long a s  proper compensation is introduced in the data analysis. It is our in- 

tention in this section to discuss the distortion effects of a low pass  filter and to 

derive the proper corrections to remove their effects for the Gaussian model. 

In the following, we t reat  the simple case where half-peak ellipse of the antenna 

response is aligned with the coordinant axes. In that case,  the response is r e -  

presented by the Gaussian function 

where 6 and @ a r e  defined in Equation (18). 
1 2 

A. Distortion Effects 

In taking the data one allows the source to pass through the antenna 

pattern a t  a constant ra te ,  say v. 

o r  whatever else i s  convenient. 

The units of v csuld be degrees/sec.  of time, 

The input signal to the filter is thus the following 

function of time: 

If the impulse response of the filter is h(t), the output signal is given by the 

convolution of h(t)  and T.  (t, x ): in 2 
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For  a simple low pass  filter 

1 - t / 7  t >  h(t) = - e 
7 

= o  t < o  

where T is the time constant of the filter. ’k Note that 

The output signal can thus be written as 

X 

2 
2 t l  

f i S  A Q1e2 X 

exp [-4n 2 - - - + -  
4k B , B ,  2 7 4  

B2 

e 
2 2  

- - 
t n 2 v  T 

1 @l m v t  

erfc [m - ’ $1 

aThis time constant is that of elementary circuit theory and is one-half the 

time constant in the radiometric equation! 
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where erfc(x) = -  e-cL dc, the e r r o r  function complement. We can simplify 
e sir 

the form’, by setting 

x = vt, 
1 

, and 
81 

2 m v - r  
s =  

The sign ficance of 6 is a s  follows: i f  he scan rate  of the antepna is such hat 

f o r  the antenna to scan the input half-power width of the response, i t  takes At 

then 

28 

It is thys proportional to the number of filter time constants in the half-power 

time of the response. 

to one-half the l / e  width of the source. 

would be : 

The parameter p is merely the r.a. coordinant normalized 

In these parameters ,  the response 

2 
2 

S A  e1e2 X 

@ 2  
Tout(xl , x  2 ) = 2k B ~ B ~  e exp{-ln 2G}[fi 6 exp (6 - 2 6 ~ )  erfc  (6 - p)] (20a) 
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In Equation (20b) the bracketed te rm indicates the distortion introduced 

by the fi l ter .  In the l imit  6 4 03 (7 4 0),  this te rm approaches unity. 

It is possible to generate some universal curves which display the 

distorting effect of the fi l ter .  

plotted with several  values of 6 .  

the response is delayed and lowered, the response loses i ts  Gaussian shape, 

and the half-peak width of the response is broadened. These effects must be 

removed in the estimation of the source parameters.  

Figure 3 is a plot of the bracket in Eqyation (20a) 

One notes that a s  6 is decreased the peak of 

B, The Estimation of Source Width 

The source widths a r e  related to the input response widths by Equations 

(18). The problem of estimating the source widths thus reduces to that of esti- 

mating the input response widths from the output of the fi l ter .  Equation (20a) 

indicates that the declination width of the response is unaffected by the filter. 

Careful calculation shows that the right ascension width of the output response 

must be reduced by an amount which depends upon parameter (6) .  The proper 

correction is given in Figure 4, Curve 2. Although the correction may appear 

small, i t  can be quite significant if the source width i s  smaller than the 

antenna beamwidth. 

C. The Estimate of Source Strength 

,The manner in which the distortion effects of the filter affects the 

strength calculation depends upon the method one is using in this calculation, 

We shall discuss the two methods presented in Section 111. 



32 

1. Method I. Here the safest  procedure would be to make a direct  

compensation in the peak temperature and the right-ascension response width. 

The proper factors a r e  given in Figure 4, Curves 1 and 2, respectively. Curve 

3 shows the magnitude of the e r r o r  which would be made in the worst  case 

(circular symmetry) i f  no corrections were applied. 

2. Method 11. It can be shown that the output data, given by Equation 

(20a)  possesses the same integral property as the input data (Equation (1 l)) ,  

independent of the fi l ter  time constant. Therefore, the most straightforward 

procedure would seem to be to replace the estimated Gaussiaq function 

(xi), by the disPtorted function d (xi), where gest I es t  1 

2 
a 2 1 

(x:.) = exp{- &n 2 ~ ~ [ f i 6  exp (6 - 2 6 ~ )  erfc ( 6  - p)] (cf.Equation 20a) 
X 

d est  I 
$9 ci 

Of course, one would first have to cor rec t  the right ascension response width 

in order to estimate the parameter 6. 

adjust the right ascension scale to make the peak of the output data corres-  

pond to the peak of d With these adjustments, the estimator of the source 

would be (cf, Equation (17a)) 

Furthermore,  one would f i r s t  have to  

est '  

s = '  est  A 8 8 C d (x.) e 1 2 N  es t  7 
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Clearly there a r e  some difficulties with this method since d 

to calculate. This is not too serious,  however, since one can resor t  to machine 

computation o r  else make use of universal filter responses such as  we have 

plotted in Figure 3 .  

(x.) is not easy e s t  -I 

VI. EXTENSION TO NON-GAUSSIAN SOURCES 

A. Introduction 

Throughout this report ,  the Gaussian form has been used to describe 

the source distribution in radio astronomy source measurements. The impli- 

cations of this assumption have been investigated with care .  Conclusiops have 

been drawn toward improved methods of estimating source strength from a set  

of data. 

The use of the Gaussian distribution was defended at  the beginning of 

this report. There a r e  a number of cases where this assumption would be 

inappropriate to use. The most obvious, and mQst  common, case is where 

the source i s  know a pr ior i  to be non-gaussian in form, e. g. ,  a planetary disc 

of known size,  Nevertheless, the basic approach which we have developed cacrl. 

be applied to the more general problem. 

briefly the extension of the technique to the general source measurement. W e  

go on to relate this approach to a specific type of measurement, the measure- 

ment of the disc temperature of a planet. 

- 

In this concluding section, we discuss 



34 

B. Basic Principles 

The principles upon which we have developed our analysis of the 

Gaussian source problem a r e  a s  follows: 

1 .  The source strength can be determined by integrating the 

antenna response in the data plane. 

in Equation ( l l b ) ,  page 12, but is t rue for a nonwGaussian source, as will be 

shown pr e s ently . 

This i s  shown for the Gaussian source 

2. In integrating the response, one reaches a point where the 

noise begins to degrade the accuracy. 

bution. 

This is surely t rue for any distri-  

3. One can retain an unbiased estimation of the source strength 

by integrating the response over a limited portion of the data plane and 

correcting for the omitted signal. 

mated" response, which previously was related to the Gaussian shape of the 

The correction is based upon an "esti- 

response. In the case where the source distribution is known beforehand, 

an "expected" response can sti l l  be formulated on the basis of this knowledge. 

4. The optimum a r e a  for integrating the response for a Gaussian 

source corresponds to that a r ea  where the expected response is over 2870 of 

i ts  maximum value. However, since the S / N  maximum is  broad, we have 

advised integrating over a larger  a rea  to reduce e r r o r s  introduced in formu- 

lating the expected response. 

where the expected response was 5-10% of the peak response. 

Thus, we advised integrating over that a rea  
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These cr i ter ia  have application to the non-Gaus sian problem. Clearly, 

some optimum a rea  of integration exists, 

believe that this is not a critical matter and we would still favor integrating 

the response over a large area.  

C. A General Formulation 

The Gaussian analysis leads us to 

We begin f i r s t  by proving what has been stated several  times: that 

the integral of the antenna temperature in the data plane depends solely on the 

source strength and not upon the source size or shape. 

( Z ) ,  page 3,  rewritten in abbreviated form: 

We being with Equation 

1 
T (x’) = E  I I(2) A(&‘ - x)  dx dx 1 2  - a -  

Changing integration variables x + x’’ where - x ” =  x‘ - x, we obtain the form - -  

If we now integrate the equation in the - x’ variable and evoke the definition of 

source strength, Equation (7b), we find 

A(2’’) dx’’dx” 
r 
J T,(2‘) dxl‘dx ‘ =--- 

2 2k 

The remaining integral on the r igh t  hand side of the equation is known from the 

antenna properties,  so  the equation can be solved fo r  the source strength, S, 

thus confirming our assertion. 

In order to  place the equations in a convenient form for discussing 

data handling techniques, let  us introduce the following definitions 
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I(x)  = Sf (sr) 
S - 

and A(2) = A f (G), 
e P  

- 
where S and A 

e S P 
describing the spacial characterist ics of the source and antenna pattern, 

have their usual meanings and f (G) and f (x) a r e  functions 

respectively, Clearly, f (g) obeys the following constraint, 
S 

and f (z) is the power pattern of the antenna. 

temperature i s  

In this form the antenna 
P 

f ( X I )  8 f(2') e T (x') =- 
SA 

a 2k s -  

and the data is  

SA 
f (x')  t T (x') e Td(x ') = - 2k r n 

where T (x')  i s  the noise, and f (x') i s  the convolution of the source distri- 

bution and pattern and i s  the response in the data plane. 

n r 

In the case of actual 

data, f (y') might be unknown a s  in the case of an assumed Gaussian source 
r 

of unknown size, o r  it might be known as  in the case of planetary measurement. 

In either event, we presumably a r e  in a position to estimate i t  in some sense. 

Our estimate of the source strength is based upon integratiQn (or 

summation) of the data over a suitable region of the data plane, a s  determined 

by signal- to-noise considerations e Thus our estimate would be 
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2k C Td(x') - 
s =  est  A C f (x') e r e -  

where f (x') i s  the estimated response function. 
r e  - 

Our estimate is as  usual regarded a s  a random variable. Provided 

our expected response function i s  not biased, the estimated flux i s  an unbiased 

estimator of the actual flux. The e r r o r  analysis can be handled by the same 

approach we used in the detailed analysis of the Gaussian problem ear l ier  in 

this report. To summarize,  Equation (21) is a generalized form of Equation 

(17a), page 23. 

The summation is performed over the source region where the response is 

about 10% of i ts  peak value, assuming some sor t  of bell shaped response. 

The omitted signal i s  corrected for by summing the expected or  estimated 

response over the same region. 

convolution of the antenna power pattern with the a pr ior i  expected source 

distribution, 

planet of known size. 

It provides the basis for  estimating the total flux of a source. 

The expected responae is determined by the 

c - 

We will now apply this formalism to the measurement of a 

D. A Planetary Measurement 

In order to apply the results of the previous section to a planetary 

measurement, we need but toderive the functions f 

planetary size and the antenna properties , suitably normalized. 

(x') based upon the 
r e  

We have 

,limited ourselves to  modeling the planet a s  a round disc of radius r and a 
0 

Gaussian beam. In cases  of current  interest  a t  this Laboratory, the planet 
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solid angle is smaller than the antenna beam, s o  a suitable form for the 

expected response is a modified Gaussian response, i. e . ,  

where g(x')  is the Gaussian beam function (g(o) =1) and is the point source 

response, and C ( r  , x')  is the correction due to finite disc s ize ,  For  the 

planet distribution, we have 

0 

and for the beam the Gaussian form, 

2 
, t  r 1 e o -1 

g k ' )  = esp [-.en 2 x - L o  21 2 5'1 
was used. In this form the correction is found to depend upon the Gaussian 

function integrated over a circular area displaced from the origin. 

x I-tr 2 12 

1 1 0  x - x  
-an 2 ( 1 2 ) dxl x C(ro,  x') =- 

e l  
nr  2 s e  

o x - r  
1 0  



39 

This factor has been tabulated in Figures 4 and 5 for  0 

beam) with normalized variables 

= G 2  = 0 (symmetric 1 

r Z-  and d n e  = -  d where d = /-. r 

n 0  
0 

In order to apply the tabulated results,  one must take the planetary 

size frqm the Ephemeris and normalize it to the beamwidth, 

response is then formulated from Figure 6. 

for disc size a r e  fairly small  in cases of practical interest, of the order of 

*10%. 

from Equation (21). 

total flux and the known size. 

The expected 

It might be noted that corrections 

F rom the expected response, the source flux would be estimated 

The disc temperature i s  then easily derived from the 
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7 Two Dimensionu/ Cuse 

One Dimensionol Case 

\ 

I I I I 

0 I 2 3 4 u -  

St’aNDARQ QEV IIATIQN OF FLUX EST1 MATE 
QUE TO RECEIVER NOISE 
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