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Abstract
This paper developes a comprehensive pointing theory for the
16-foot antenna, The pointing of the antenna anywhere in the sky is

related to the servo encoder readings through eight error parameters.

It is shown that these eight parameters may be determined by an orderly

sequence of simple experiments.
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I. Introduction

The position of an object in the sky is usually given in equitorial
coordinates. The equitorial coordinate system is a spherical system in
which the pole is parallel with the rotational axis of the earth. The equitorial
coordinates are declination, §, and hour angle, t. The declination of an
object is the complement of the conventional polar angle. The hour angle
of an object is the angle measured in the equitorial plane between the
meridian and the projection of the ray to the object into the equitorial plane.

This coordinate system is shown in Figure Al,

P VERTIC v

Figure Al
The sixteen foot antenna is supported by a mount which is intended
to be an equitorial coordinate system. One axis, the polar axis, is suspended
between two piers. This axis is intended to be parallel tc the celestial pole.
A second axis, the declination axis, is mounted on the polar axis and is per-

pendicular to it, The antenna is then mounted on the declination axis so
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that it points in a direction perpendicular to the declination axis. Thus,
rotating the structure about the polar axis changes the hour angle of the
antenna while rotating the antenna about the declination axis changes the
declination of the antenna. The relative angles of these rotations are sensed

by servo-encoders and displayed to one-one thousandth of a degree.

II. The Pointing Problem

In determining the antenna pointing for a given celestial object one
usually starts with the geocentric coordinates. The geocentric coordinates
are the coordinates at which the object would be seen if viewed from the
center of the earth., The antenna is located at the surface of the earth, and
coordinates referred to the sight of the antenna are called topocentric coor-
dinates. Geocentric and topocentric coordinates differ because of refraction
and parallax. However, the servo-encoders do not read topocentric coor-
dinates because their readings are affected by several small but important
imperfections in the antenna, These are:

1. Encoder Bias - The angles read by the servo-encoders are
only relative angles.,

2, Sag - Sag is caused by the elasticity of the spars that support
the feed. Since the effect of sag is to move the feed in the
vertical plane, it will be associated with refraction and
parallax, which also occur in the vertical plane,.

3. Orthogonality - This is the group of three errors which are
best thought of as errors of orthogonality. These are as

follows:




a. The polar axis may not be perpendicular to the
equitorial plane.

b. The declination axis may not lie in a plane perpen-
dicular to the polar axis,

c. The antenna beam may not lie in the plane perpen-
dicular to the declination axis.

One can see that the servo-encoder readings differ from the geocentric
coordinates of the object by several small but important effects. The pur-
pose of this paper is to give a method with which the servo~-encoder readings
can be obtained from the geocentric coordinates. First, simple approximate
equations are derived that correct the geocentric coordinates for the various
errors discussed above. Second, methods are g{ven to‘rneasure all of the
error parameters. The results of some of these measurements are pre-

sented.

III. Correction Equations

Detailed consideration Qf all the error effects is rather tedious and is
given in Appendix AA. The correction equations will be simply stated here
with only heuristic justification., Only those terms that are of greatest
significance are retained, so that the correction equations should be re-
garded as approximations. If first order accuracy is not enough, then the
exact expressions of Appendix AA can be used., However, unless the errors
are large the first order approximation is quite good in most of the sky.

One is interested in the pointing of both the radio frequency beam and

the optical telescope mounted on the antenna backup structure. The pointing
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of these two axes are similar but they do exhibit important differences, thus,
there is a pair of equations relevant to each. The radio frequency beam

correction equations are

D=6+ecos (t-o)-{S(E)+Z-R(E)}cosp+K (1a)

Rf

P=t+[esin(t-og)-T]tané - [{S(E) + Z - R(E)} sinu+LRf] sec6+Kp,

(1b)

while the appropriate equations for the optical telescope are

D=6+ecos(t-cp)-{Z-RO(E)}cosu+Ko (2a)
P=t+[esin(t-o)=-T] tans-({Z - RO(E)} sin . + Lo) sec § + Kp (2b)
where:

D = Declination servo reading

P = Polar servo reading

8 = geocentric declination

t = geocentric hour angle

R(E)= Refraction correction
S(E) = sag correction, Sag is positive if the beam is

rotated toward the vertical.

Z = parallax correction

€ = co-declination of polar axis

o) = hour angle of polar axis

r = angle declination axis makes with plane

perpendicular to polar axis., T is positive if
the western tip of the declination axis is north

of this plane.
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L. = angle telescope axis makes with plane perpendicular

to declination axis. LO is positive if the telescope

axis is west of this plane,

L_ . = angle radio frequency beam makes with plane perpen-

Rf

dicular to declination axis when the beam is exactly

vertical,
KO = Declination additive constant for optical telescope
KRf = Declination additive constant for R.{, axis
Kp = Polar encoder additive bias.
i = angle at the object in the vertical - celestial pole -

cbject spherical triangle, The cosine and sine of

this angle are plotted in Figure A2 and A3 for

convenient reference,

First let us consider the declination equation term by term., One can

see that the declination servo reading must first be corrected for polar axis

misalignment. Clearly the error in declination will be maximum when one

looks along the hour angle of the polar axis, ¢. Likewise it will be zero

when one looks at an hour angle perpendicular to 9. The correct inter-

polation between these two extremes is the cosine law,

The term {Z - R(E)}

cos | is the standard correction for refraction and parallax, and the term

Lo or LRf

The polar equation is only slightly more difficult,

term may be thought of as a declination axis tilt term.

appears because the servo-encoders only sense relative angles.

The first correction

From A4 cne can

see that a tilt in the declination axis will make an arc error on the unit sphere
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proportional to sin §, But this arc angle must be converted to an hour
angle by dividing by cos §, Thus declination axis tilt gives an error in
hour angle proportional to the tilt times tan 6‘, The tilt itself can be seen
to arise from two causes. The first is declination axis non-orthogonality,
the second is tilt caused by misalignment of the polar axis, which will vary
with hour angle. The second term, {Z - RQ(E)} sec § is the standard correction
for refraction and parallax, The third term L0 sec § arises because the
telescope direction may not be orthogonal to the declination axis. This gives
an error of constant arc on the unit sphere which, when converted to hour
angle, becomes Lo sec §. The constant Kp is merely the encoder bias.

A question naturally arises about which parameters in (la) and (1b)
would change if the feed position were changed, A careful examination of

Appendix AA reveals that the only two that change are K

'

and L

Rf Rf

IV. Measurement Methods

All of the error parameters may be measured by simple experiments.
The orthogonality errors and encoder biases may be measured by tracking
stars with the optical telescopes. The sag and refraction, on the other hand,
may be fit to a simple model by observing the sun as it passes through the
beam of the telescope. Since the sag and refract_ion measurement is rai:her
noisy a method 1s given to estimate the error in the measurement.

A. Star Tracking

The polar axis co-declination and hour angle may be measured by

tracking a single star with the optical telescope over a wide range of hour




angles. The declination readout as a function of hour angle, D(ti)’ is con=

sidered the data set for this experiment, Equation (2a) becomes

. =8 4+ .- + R s, + K

D, =5 +¢ cos (t1 ®) (E) co W o

where Ko, ¢, and ¢ are taken to minimize the mean square error. Specifi-
cally,

n n
Z [Qi - (KO + ¢ cos (t.1 - cp))]zs E[Qi - {a + b cos (ti - c))]2

i=1 i=1

for all a, b, and ¢, where

0. =D, -8 - R(E) cos p..
i i i

B. Star Transits
The declination axis and telescope orthogonality srrors as well
as the polar encoder bias may be measured by an experiment which is com-
plementary to the one above. 'The polar servo is set at P and the transit
time of several stars is observed over a wide range of declinations, When
the hour angle of the star agrees with t in Equation (2b), the star has transited

the telescope. This will occur when

t, = ST, -~ o,
where ST, is the siderial time of transit and @, is the right ascension of
i

the star. Substituting this into Equation (2b) yields:
P+o - 8T, -¢ sin (ST, - o, - ¢) tan §, - R(E) sin p, sec (§,) = -T tan §,
i i i i i i i i

- L secd, +K .
o i P
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Just as in the case above, the constant, T, LO, and Kp, are taken to be the
best mean square fit to the data. If the polar servo is set at P = ¢, then the
term € sin (STi - RAi - @) will tend to drop out., Likewise if P is set to zero
then the refraction term will tend to drop out. Therefore, if data is taken
at both P = ¢ and P = 0 then a check on both theory and experimental technique
is provided.
C. Sag and Refraction Models

The theory of optical refraction is well understood. When an optical
ray impinges on the earth's atmosphere it is bent in the plane determined by
the vertical and the ray to the object, The amount of this bending is usually
called refraction and is given to within a second of arc by Garfinkel's Theory.
The refraction as given by this theory may be calculated on the digital com-
puter and will be denoted by RO(E). We shall assume that the radio frequency
refraction follows this same law buy may differ from it by a constant multiple

(1 + 1), i.e.

Rp (E) = (1 + 1) R_(E),

We shall assume that the sagfunction is given by

S(E) = S cos (E).
Thus, the problem of describing the sag and radio frequency refraction is
reduced to finding the two constants S and r.
D. Polar Sun Scans
One way of relating these two parameters is to take scans of the

sun. Suppose the polar servo is set and a transit of the sun is observed in
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both the radio frequency and optical telescopes. At transit the hour angle
of the sun agrees with t in Equativns (1b) and {2b), This will occur at a

siderial time given by

ST = o +t.
When this relation is substituted into Equation 3b, one obtains

P =ST +{e sin (ST .~ o

Rf Rf-cp)-l":] tan §

Rf ~ “Rf

-~ [{S(E) =~ R, . (E) + Z} sinu + LRfJ sec § + Kp,

Rf

and the appropriate equation for optical transit is
= - + i T - - -
P=ST -o [e sin (S 0™ % @) ~ TJtan §

-[{z-~ RO(E)'} sin y + LO] sec & + Kp.

The difference of these two equations is then

K (T -To)cosé={Scos(E)-rRQ(E)}sinp+Lf—L,

(o]

Rf

where K may be considered the mean solar rate and (T

R

RE " TO) the difference

in transit times., For each transit observed the difference in transit times

may be considered a data point, so one can write

Kdi cos 6i = {S cos (Ei) -r RO(Ei)} sin p, + LRf - LO (3a)

where,

<:1i = (TRf - TO). (3b)

Thus, if the sun is tracked over a wide range of hour angles, then the para-

meters S, r, and L., - Lo are determined with good accuracy by the best

Rf
mean square fit of the data.

An effort has been made to determine the expected errors in

estimating the sag and refraction coefficients, Suppose one takes ''n'' data
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points in a day. Each data point consists of an estimate of T , . - T0 along

Rf

with the approximate hour angle and declination of the telescope during the

scan., Suppose further that the estimate of T _ - To can be modeled with

Rf

statistics and that the estimate of the transit time difference may be written

= -T +
di TRf o Xi
where Xi is a sequencge of identically distributed random variables with zero

mean. Now the estimates of S and r are given by the random variables, S’

and r ', where S’ and r’/ are the best mean square fit of the data, di’ i. e.

n
’ ¢ . 2

}: [di K cos 65. - {8 cos Ei-— r R(Ei)} sin p, - (LRf- LO)] <
i=1
c 2

+ + i +
2[di K cos 8, {a cos Ei b R(Ei)} sin p, c]
i=1

for all a, b, and ¢. It can be shown that the estimates S‘andr’ converge
with probability one to S and r as n goes to infinity. This is the strongest
type of statistical convergence and although the proof is simple it is rather
tedious and will not be included here,

However this does not answer the basic question of what errors
could be expected from a finite set of data. This can be done to some extent
by estimating the variance of S’ and r’ on the digital computer. This is done
by repeatedly calculating S’ and r’ where the X's are generated by a random
noise generator. As might be expected the density functions of S’ and r’

were Gaussian with zero mean. Table I gives some of these results
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Case n Elevation Range Hour Angle Range 206(S')  20(r’)
1 18 9.6° - 49° 273° - 320° .015° 10%
40 20° - 75° 280° - 80° .004° 20%
3 20 2° - 40° 284° - 30° .003° 2%
Table I

where in each case the density function for Xi is given by

4@(%)

o .

Zo 0 0004 (DEGREES)

Study of this table shows that a wide range of hour angle and elevation angle
is important in determining the sag coefficient and low elevation angle are
particularly important in determining the refraction coefficient.

s Determination of L :
E Rf

Note that L ¢ may be determined from L

R - Lo if Lo is known,

Rf
but L0 will be known only if the optical telescope has not been moved since
the star transit experiment was performed. Since it is often necessary to
move the optical telescope in practice, some other method of determining
LRf is needed. This may be done by simply keeping time on the sun scan

data. This method has the disadvantage that it requires the calculation of
the right ascension of the sun for each data point.

For this experiment the time of transit as a function of polar servo

setting, T(Pi), is considered the data set.
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Equation (1b), when solved for LRf’ becomes

= - + - i - - - i
LRf (Pi STi a»i) cos 51 [e sin (S'I‘i o, ) - T] sméi

+ [(5 + 1) cos Ei -(1+7r) Ro(Ei)] sin W, - Kp cos 8, (4)
where
STi = siderial time of transit
a, = right ascension at transit
T = horizontal Parallax

One can now form an estimate of LRf by averaging the right hand side of

Equation (4), which we shall dencte by Qi

1
L T -
n

Rf Q.l

1

I~

et
i
[

F. Declination Sun Scans
The sag and refraction coefficients may be obtained from declination

scans also. Suppose the antenna is scanned in declination at rate K, i.e,

D=D +K(T-T),
o S
and the hour angle of the antenna is made equal to the hour angle of the sun.
Then at time TRf the declination of the radio frequency beam will agree with

the declination of the sun. From Equation (la)

D0+K(TR ~-T )=58 + e cos(t-cp)-{S(E)+Z-RRf(E)}cosu+K

f s sun Rf’
Likewise when the declination of the optical telescope beam agrees with the

declination of the sun, one has from Equation (2a)

+ - = + - - - .
Do K(TO TS) 8 e cos (t- o) - {2 RO(E)} cos u + Ko

sun
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Now, if one takes the difference of and substitutes the expression
assumed for the sag and refraction function, he obtains
- = - + -K).
K(TRf TO) {r RO(E) S cos E} cos p + (Krf O)
Thus, the parameters r and S may be obtained by finding the best least

square fit to the data where

di = rf Topt)

and
= - + - .
Kdi {r Ro(Ei) S cos (Ei)} cos b, (Krf KO)
G, Determination of K

Rf

The same considerations that apply to L_ . also apply to K

Rf Rf’

Here again it is expedient to use a method that gives this parameter directly.
This may be accomplished with Equation (1b), if the sag, refraction, and
orthogonality coefficients are known. The servo declination is marked on a
record while a declination sun scan is made. From this one determines the
declination readout when the radio frequency beam is at the center of the sun.

This readout will be denoted by Di and Equation (1b) becomes

KRf = Di - ésun - ¢ cos {t-c)+ {(S+m) cos E~(1 + r)RO(E)} COS k.
H. Summary of Measurement Methods
At this point it would be helpful to summarize the information given
by sach of these experiments and inquire into an orderly way to obtain all the
parameters for the radio frequency beam. The parameters determined by

cach experiment, as well as the parameters that must be determined before

the experiment can be performed, are summarized in Table II.
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Information Given by Pointing Experiment

q L K K K th
e ! T RE LO o o Rf S| r | other

Star Tracking x | x X

Star Transit o o) b'e X X

Polar Sun Scans % | X L - L
Rf o)

Dec Sun Scans X | x KR:f - KO

Determine LRf o) o o big G G e}

Determine KRf ¢ o ‘ X o) G

x - Information given by Experiment
o - Information requirad in data reduction
Table 11
From Table II one can see that the experiments determined all the

pointing parameters. Furthermore, it is clear that the experiments should be
done in the order listed except that the polar and declination sun scans nsed
not both be done, since they give the same information, Actually the parameter
LRf may be determined from the polar sun scan data if time is marked on

the record., It is clear that the five experiments; Star Tracking, Star Transits,

Polar Sun Scans, Determinaticn of L and Determination of K_ , constitute

Rf’ Rf

an orderly way of determining all the pointing parameters.




Appendix AA
Derivation of Pointing Equations

It is the purpose of this appendix to derive the polar and declination
servo readings from the geocentric coordinates considering the pointing
errors discussed in Section II of the paper. The method for doing this will
be to first resclve the point given by § and t into rectangular coordinates,
Then we consider a sequence of coordinate system transformations. Each
transformation will suppress an angle from consideration. This angle may
either be a desired angle generated by the servo-s;ystem or an error angle, -
After the final coordinate transformation, the point on the unit sphere, repre-
sented by 8 and t, will be a simple basis element, i.e. a (001) vector. Orce
this exact relationship among the angles is derived, it is shown that the first
order equations given in Section II satisfy this relationship.

Suppose that the geocentric hour angle and declination of an object
are given by t and §. We wish to resolve the point on the unit sphere into the
coordinate system given in Figure AAl. From simple trigonometry one

/

can see that

Al = gin §
A2 = cos 6 cos t
A3 = cos § sin t

Now following the method outlined above, the first angle that will be
suppressed will be the hour angle of the polar axis. To do this we will

transform to coordinates Bl’ B_, and B3 as shown in Figure AA2. This

2

coordinate transformation may be represented by the matrix equation

17




A2
MERIDIAN

Fig. AAL

=

POLAR \ A, and B,

4

Fig. AA2.



19

B1 1 0 0 Al
B‘2 =10 cosg ~-sing AZ
B3 0 sin ¢ cos @ A3

The next angle to be suppressed is the polar axis co-declination ¢.

This is accomplished by transforming to C coordinates as shown in Figure

AA3.

NORTH

PolAR

B39 Cj

Fig. AA3

This may be represented by the matrix equation

Fig. AA4 shows the polar and declinaticn in C coordinates.

cecs € sin e 0

sin ¢ CcoSs ¢ 0

0 0

1
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7 U3
C3
~ _DECLINATION
AXIs
Fig. AA4

The polar axis is coincident with the C1 direction but the declination axis is
not in general in the (Cz, C3) - plane. Suppose it makes an angle T' with this
plane. The function of the polar servo is to rotate the declination axis about
the polar axis. This may be thought of as varying the angle p in Figure AA4.
Following cur method let us suppress the angle p by transforming to

the D-coordinates. TheD-set is related to the C-set by the matrix squation

S I
D1 1 0 0 C1
D2 =10 cos (-p) sin (-p) CZ.
D3 0 -sin (-p) cos (-p) C3

D 1 0 0 C

1 1
D2 =10 cosp -sinp CZ
D, 0 sinp cos p C3 .
I R LI
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 Now the angle T may be suppressed by rotating about the D3 axis as

shown in Figure AAD, PO

L i E,

TSDECL TN ATION

Fig. AA5

The E-ccordinates are now related to the D-coordinates by the matrix

equaticn
— . e and -
Eﬂ cos T sinT O D,
EZ =i~-sin T cos T 0 DZ
E 0 0 1 D
3 | 3

The function of the declination servo éystem is to rotate the antenna
backup structure about the declination axis. In order to speak quantitatively
about the position of the backup structure one needs a reference direction for
it, i.e. a direction that does not change with respect to the backup structure.
This reference direction may be thought of as the direction of an optical
telescope mounted on the side of the backup structure. This works well to
describe the pointing of the optical telescopes, but it is more convenient to
choose a different reference for the radio frequency axis because of the sag
effect, However, the pointing equations for both the radio frequency axis and

the telescope axes may be derived at the same time with a general reference
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direction keeping in mind that the constants that depend upon the reference
directions are different in the two cases.

Let ys denote the reference direction for the radio frequency axis by
Q. Qis 2 direction imbedded in the backup structure that passes through
the maximum of the antenna radiation pattern when the maximum is exactly
vertical. Then it is assumed that the sag effect is deseribed by saying that
the radic frequency beam is rotated an amount S(E) toward the vertical in
the plane determined by the vertical and Q. This definiticn serves to fix

the sign of the sag function as well as the eondition

5(-23) = 0.

The direction (3 is deseribed by the angles d and L on the declination

axis coordinates of Figure AA6, The angle d is, of course, within an additive

constant of the angle readout by the declination servo encoder and L is the

angle of Q direction makes with the plane perpendieular to the declination

axis,
pE1g
Fy 7 F3
AN Ve
Vs
trf 7
RAP
L7 S
Es
E-2¢ FZ
DEC AxIg

Fig. AAb
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We can suppress the angle d by rotating about EZ to the F

coordinates. This may be represented by the matrix equation

_F; m:os d 0 -sin'c-l—_ --El-..,
=10 1

FZ 0 E2

F3 sin d 0 ccs d E3

In a like manner we can suppress the angle L_ by rotating about the Fl

Rf

axis to the G coordinates. This rotaticn is shown in Figure AATY.

F‘:Z.Q»Gi
N

Z O
£ <
2 &
C &g
/} ]
o
Fig. AA7 4%

This transformation may be represented by the relationship

e — -
G 1 0 0 ] F_—_]
1 1
G2 =10 cos LRf -sin LRf FZ

0 i .
C}3 sin LRf cos LRfL F3 {

Now we need to know where the vertical is and rotate an amount S{E) toward
it to find the R.f. beam. But finding the vertical in the y’ coordinates is no
trivial matter until one realizes that we already have the tools available to

find it. The vertical has an hour angle cf zero and a deslination angle equal
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to the latitude so it has Al’ A_, A3 coordinates

2
A1=sinL
A2=COSL
A =0
3

and it can be transformed to the G-ccordinates by the equation.

Gl" B 0 “1fcosd 0 -sind]
3 = -gi 1
GZ 0 cos LRf gin LRf 0 0
G / + . + .
3 0 +sin LRf cos LRf sind O cos d
I L O —
cos T sinl Off{1 O 0 |[ cose sine O|[1 O 0 "“~in
i
-sinT cosT" 0}/|0 cosp =-sinpj|-sine cose O0|]0 cosgy -sin qpi%co
1
A |
0 0 1 £ sinp, cospi| O 0 1110 sing cos gi|0
L. - N I - N I

Now let us define the angles y and z by the equations

1

Gl' COS y COs 2

7 .
GZ = gin | cos z

G /

sin z
3

These angles are shown in Figure AA8, The angle z is the zenith
angle of the unsagged beam and the angle p can be shown to be the spherical
angle at the cbject in the spherical triangle made by the object, the vertical,

wH1
and the celestial pole.
NG 1

N _VERTICHL
\
¢z
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Hq
;-/".E /'z 7 I . {,
// -
- = KF Fram
= -
//
H
Fig. AA9

One can now rotate the (G1 , G_)-plane into the (Hl’ H3) plane by rotating

3

the angle p about the G3-H3 axis. This may be represented by the matrix

equatiocn
WH;} cos y sinyp 0 | Cr1 {
H2 =4{-sinp cospy O GZ l}
|
H 0 0 1 G, |
5 5 |

Now the vertical and Q direction are in the (H1 , H3)-p1ane and the radic
frequency beam makes an angle S(E) with the H3 axis as shown in Figure AA9.
With cne more change of coordinates we would obtain a system in which the

radio frequency was a simple basis vector. However, it is clear from Figure

AA9 that
H, = sin S(E)
H2 =0
H_ = cos S(E).
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Collecting all of these rotations, the-radiofrequency beam may be repre-

sented by
sin § B *sin S |
cos § cos(t-o) | =J |0 (1)
-cos § sin (t - o) cos S
where J is a rotation given by
cos e -sine Of[1 0 0 N cos ' =-sinT 0| cosd 0 sin d
J =|sin ¢ cose 0110 cosp sinp||lsinT cos " 0f]0 I 0
9_ 0 1{]0 -sinp cos 0 0 liksind 0 cos d
1 0 0 —!‘cosp, -siny O
0 cos LRf sin LRf, !sin W cosyu O
ﬂ? -sin LRf cos LRi !.O 0 lA
and the angle y is given by
Mcos b cos z| 1 o 0 N ::os d 0 -sgin d—
siny cos z| =10 cos LRf -sin LRf 0 1 0
, sin gz _ f) sin LRf cos LRf_ sind O cos d_
khcos ' sinT 0:' ~1 0 0 e cos ev sin e— '() sin L ]
-sinT cosT O0||0 cosp -sinp||-sine¢ cose ||OcosL cosg
0 0 1110 sinp cos p 0 0 l cos L sing

This equation may be best regarded as an equation to be solved for the de-
clination and hour angle given in polar and declination drive angles and all
the errors.

The declination and hour angle, § and t above, are topocentric coor-

dinates, that is, they are the declination and hour angle referred to the site




27

of the antenna. The astrocnomical coordinates that are usually used are
geocentric coordinates, i.e. the coordinates of the cbject as seen from the
center of the earth. There are two phencmena, refraction and parallax that
make these twc coordinate systems differ. Both may be considered rotations
in the plane formed by the vertical and a ray to the object. This plane is also
the plane formed by Q and the vertical in the discussion above. Refraction
always rotates the ray toward the vertical and parallax always rotates it

away from the vertical. Thus, the declination and hour angle in Equation (1)

above may be changed from topocentric to geocentric coordinates by replacing

S(E) by V= S(E) - R(E) + Z
where R(E) is the refraction and Z is the angle of parallax, One can now

rewrite Equation (1) as

— —_ —
sin § sin V

cos 6 cos (t-¢o) = J|O (2)
-sin § sin (t - (p_)J cos V

This equation is rather complicated, but one can cbtain an approximate
sclution by assuming that the errors are small., In this case an expression

that solves Equation (2) to first order terms in small quantities is

8 =d-¢cos (t-g)+ Vcosy
t=p+<p——g~-[e sin {t - @) - T} tan § + (V sin y + L) sec 6.
Taking into account the servo encoder bias, the pclar and declination

servo readings for the radio frequency beam may be written

D=§+¢ cos {t-¢)- Vcospy +K (3a)

Rf
P=t+ [e¢ sin(t-cp)—I"]tan{sn(Vsinp,+LRf)sec6+KP,

(3b)
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and the appropriate equations for the optical telescope are

P=t+[e sin (t - o) -

where

D=5+ecos(t-cp)-{Z-R(E)}COSM+KO (4a)

R(X)

S(E)

I'Jtané - ({Z - R(E)} sin p + Lo) sec § + Kp, (4b)

Declination servo reading
Polar servo reading
geocentric declination
geccentric hour angle
refraction correction

sag correction

parallax correction
co-declination of polar axis
hour angle of pclar axis
angle declination axis makes with plane perpendic:’
to polar axis

angle optical axis makes with plane perpendicular
to declination axis

angle Q direction makes with plane perpendicular
to declination axis

Declination additive constant for optical telescope
Daclin~tion additive constant for R.f. axis

Polar encoder additive bias.
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The constant KP is the same in both equations because it represents
the encoder bias; however, the constants KRf and KO are not the same in

general. They differ by the difference in declination between the Q direction

and the optical telescope direction.




Appendix BB

Measurements

This appendix presents the results of the sequence of measurements
suggested in the mein part of the paper., The results of these experiments

are as fecllows:

€ =0°.078
¢ = -.4823 radians
r =-0.° .006
K =-0° .128
P
S =-0° .010
r = -20%

A star tracking experiment was performed August 26, 1968. This
experiment gives the polar axis co-declination and hour angle, ¢ and ¢ as
well as the constant KO. Figure BBl gives the experimental results in
graphical form. The stars represent data points while the line is the best
mean square fit.

A star transit experiment was performed cn May 11, 1969. This
experiment gives the declination axis and telescope non-orthogonality as
well as the polar encoder bias. Just as in the preceding example the re-
sults are shown in graphical form in Figure BB2,

Tigure BB3 gives the results of a day of polar sun scans in graphical
form. Although there are a large number of data points in this data set,
the data set falls short of a gcod measurement because of the lack of data
points at lower elevations. The sag and refraction coefficients are

S

i

.010 £+ ,004

~-.21 + .20,
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