18 research outputs found

    Predicting major bleeding in patients with noncardioembolic stroke on antiplatelets

    Get PDF
    Objective: To develop and externally validate a prediction model for major bleeding in patients with a TIA or ischemic stroke on antiplatelet agents. Methods: We combined individual patient data from 6 randomized clinical trials (CAPRIE, ESPS-2, MATCH, CHARISMA, ESPRIT, and PRoFESS) investigating antiplatelet therapy after TIA or ischemic stroke. Cox regression analyses stratified by trial were performed to study the association between predictors and major bleeding. A risk prediction model was derived and validated in the PERFORM trial. Performance was assessed with the c statistic and calibration plots. Results: Major bleeding occurred in 1,530 of the 43,112 patients during 94,833 person-years of follow-up. The observed 3-year risk of major bleeding was 4.6% (95% confidence interval [CI] 4.4%–4.9%). Predictors were male sex, smoking, type of antiplatelet agents (aspirin-clopidogrel), outcome on modified Rankin Scale ≄3, prior stroke, high blood pressure, lower body mass index, elderly, Asian ethnicity, and diabetes (S2TOP-BLEED). The S2TOP-BLEED score had a c statistic of 0.63 (95% CI 0.60–0.64) and showed good calibration in the development data. Major bleeding risk ranged from 2% in patients aged 45–54 years without additional risk factors to more than 10% in patients aged 75–84 years with multiple risk factors. In external validation, the model had a c statistic of 0.61 (95% CI 0.59–0.63) and slightly underestimated major bleeding risk. Conclusions: The S2TOP-BLEED score can be used to estimate 3-year major bleeding risk in patients with a TIA or ischemic stroke who use antiplatelet agents, based on readily available characteristics. The discriminatory performance may be improved by identifying stronger predictors of major bleeding

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Cell‐Specific Actions of the Prostaglandin E‐Prostanoid Receptor 4 Attenuating Hypertension: A Dominant Role for Kidney Epithelial Cells Compared With Macrophages

    No full text
    Background A beneficial role for prostanoids in hypertension is suggested by clinical studies showing nonsteroidal anti‐inflammatory drugs, which block the production of all prostanoids, cause sodium retention and exacerbate hypertension. Among prostanoids, prostaglandin E2 and its E‐prostanoid receptor 4 receptor (EP4R) have been implicated in blood pressure control. Our previous study found that conditional deletion of EP4R from all tissues in adult mice exacerbates angiotensin II‐dependent hypertension, suggesting a powerful effect of EP4R to resist blood pressure elevation. We also found that elimination of EP4R from vascular smooth muscle cells did not affect the severity of hypertension, suggesting nonvascular targets of prostaglandin E mediate this antihypertensive effect. Methods and Results Here we generated mice with cell‐specific deletion of EP4R from macrophage‐specific EP4 receptor knockouts or kidney epithelial cells (KEKO) to assess the contributions of EP4R in these cells to hypertension pathogenesis. Macrophage‐specific EP4 receptor knockouts showed similar blood pressure responses to alterations in dietary sodium or chronic angiotensin II infusion as Controls. By contrast, angiotensin II‐dependent hypertension was significantly augmented in KEKOs (mean arterial pressure: 146±3 mm Hg) compared with Controls (137±4 mm Hg; P=0.02), which was accompanied by impaired natriuresis in KEKOs. Because EP4R expression in the kidney is enriched in the collecting duct, we compared responses to amiloride in angiotensin II‐infused KEKOs and Controls. Blockade of the epithelial sodium channel with amiloride caused exaggerated natriuresis in KEKOs compared with Controls (0.21±0.01 versus 0.15±0.02 mmol/24 hour per 20 g; P=0.015). Conclusions Our data suggest EP4R in kidney epithelia attenuates hypertension. This antihypertension effect of EP4R may be mediated by reducing the activity of the epithelial sodium channel, thereby promoting natriuresis

    Cleavage of High-Molecular-Weight Kininogen by Elastase and Tryptase Is Inhibited by Ferritin

    No full text
    Ferritin is a protein principally known for its role in iron storage. We have previously shown that ferritin can bind high-molecular-weight kininogen (HK). Upon proteolytic cleavage by the protease kallikrein, HK releases the proinflammatory peptide bradykinin (BK) and other biologically active products, such as two-chain high-molecular-weight kininogen, HKa. At inflammatory sites, HK is oxidized, which renders it a poor substrate for kallikrein. However, oxidized HK remains a good substrate for elastase and tryptase, thereby providing an alternative cleavage mechanism for HK during inflammation. Here we report that ferritin can retard the cleavage of both native HK and oxidized HK by elastase and tryptase. Initial rates of cleavage were reduced 45-75% in the presence of ferritin. Ferritin is not a substrate for elastase or tryptase and does not interfere with the ability of either protease to digest a synthetic substrate, suggesting that ferritin may impede HK cleavage through direct interaction with HK. Immunoprecipitation and solid phase binding studies reveal that ferritin and HK bind directly with a Kd of 134 nM. To test whether ferritin regulates HK cleavage in vivo, we used THP-1 cells, a human monocyte/macrophage cell line that has been used to model pulmonary inflammatory cells. We observed that ferritin impedes the cleavage of HK by secretory proteases in stimulated macrophages. Furthermore, ferritin, HK, and elastase are all present in or on alveolar macrophages in a mouse model of pulmonary inflammation. Collectively, these results implicate ferritin in the modulation of HK cleavage at sites of inflammation
    corecore