745 research outputs found

    Influence of ionic additives on triclinic calcium pyrophosphate dihydrate precipitation

    Get PDF
    Triclinic calcium pyrophosphate dihydrate (t- CPPD) crystals are one of the two polymorphs of microcrystals that have been found in the joints of patients suffering from pseudogout. However, there is currently no treatment for inhibiting the formation of these crystals, which present a high inflammatory potential. In this context we studied in vitro the precipitation of t-CPPD in a stirred reactor under pH- and temperature-controlled conditions and determined the effect of selected biologically relevant ionic additives (Mg2+, Cu2+, Fe3+, Zn2+, S2O3 2−) on its formation. The results showed that 1 mM Fe3+, Zn2+, or Cu2+ induced the most significant changes by partly inhibiting the crystallization of t-CPPD and favoring the formation of an amorphous-CPP phase (98 wt %) in the presence of Fe3+ or a monoclinic-CPPD phase (78 or 71 wt %, respectively) in the presence of Zn2+ or Cu2+. Correlations between 31P solid-state NMR, XRD, and elemental analyses showed that the additive cations are inserted into the monoclinic-CPPD and/or amorphous-CPP phases. This study, which combines structural, morphological, and elemental analyses, paves the way toward a deeper comprehension of the role of ionic additives in preventing the formation of CPPD crystalline phases, and is a key step in long-term development of an effective therapeutic treatmen

    Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers

    Get PDF
    Research Areas: Veterinary SciencesBackground: Chlorella vulgaris has been proposed as a sustainable green feedstock in poultry nutrition due to its ease of cultivation, minimal environmental impact and balanced nutritional composition. However, the majority of studies documents the use of C. vulgaris as a dietary supplement in broilers instead of a feed ingredient. To the best of our knowledge, no report has shown the effect of a high-level incorporation (>2 % in the diet) of C. vulgaris on plasma metabolites and hepatic lipid composition of broilers. One hundred and twenty Ross 308 male birds were housed in 40 wired-floor cages and randomly distributed by the following experimental diets at 22 days of age (n = 10) during 15 days: (1) a corn-soybean meal based diet (control); (2) based diet with 10% of C. vulgaris; (3) diet 2 supplemented with 0.005% Rovabio® Excel AP; and (4) diet 2 supplemented with 0.01% of a pre-selected four-CAZyme mixture. Results: The inclusion of C. vulgaris at 10% in the diet, regardless of the presence of exogenous CAZymes, changed plasma metabolites but did not compromise broilers growth. Plasma total lipids increased in broilers fed C. vulgaris combined with the two feed CAZymes (p < 0.001) compared with the control diet. Moreover, the supplementation with Rovabio® increased total cholesterol and LDL-cholesterol, while the addition of the four-CAZyme mixture increased triacylglycerols, VLDL-cholesterol and ALP activity. In opposition, HDL-cholesterol levels decreased in broilers fed microalga alone (p = 0.002). Regarding hepatic composition, the inclusion of C. vulgaris in broiler diets, individually or combined with exogenous CAZymes, had a minor effect on fatty acids but improved the n-6/n-3 ratio and total carotenoids. Conclusions: In summary, the inclusion of a high level (10%) of C. vulgaris in broiler´s diet, regardless of the presence of exogenous CAZymes, improved hepatic antioxidant composition and did not impair broiler’s performance. In addition, the feed supplementation with CAZymes increased broilers lipemia. Therefore, dietary C. vulgaris at this incorporation level seems to be safe for animal health and do not compromise performance traits, with no need of CAZymes supplementation.info:eu-repo/semantics/publishedVersio

    Combined efects of dietary Laminaria digitata with alginate lyase on plasma metabolites and hepatic lipid, pigment and mineral composition of broilers

    Get PDF
    Research Areas: Veterinary SciencesABSTRACT - Background: The Laminaria digitata is an abundant macroalga and a sustainable feedstock for poultry nutrition. L. digitata is a good source of essential amino acids, carbohydrates and vitamins, including A, D, E, and K, as well as triacylglycerols and minerals, in particular iron and calcium. However, the few studies available in the literature with broilers document the application of this macroalga as a dietary supplement rather than a feed ingredient. No study has addressed up until now the efects of a high-level incorporation (>2% in the diet) of L. digitata on plasma biochemical markers and hepatic lipid composition, as well as minerals and pigments profle in the liver of broilers. Our experimental design included one hundred and twenty Ross 308 male birds contained in 40 wired-foor cages and distributed to the following diets at 22days of age (n=10) for 15days: 1) a corn-soybean basal diet (Control); 2) the basal diet plus 15% of L. digitata (LA); 3) the basal diet plus 15% of L. digitata with 0.005% of Rovabio® Excel AP (LAR); and 4) the basal diet plus 15% of L. digitata with 0.01% of the recombinant CAZyme, alginate lyase (LAE).info:eu-repo/semantics/publishedVersio

    Multinuclear solid-state NMR investigation of Hexaniobate and Hexatantalate compounds

    Get PDF
    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). 1H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8–xM6O19·nH2O (A = alkali ion; M = Nb, Ta). 93Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oμ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), 93Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The 93Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oμ2H sites). 1D 23Na MAS and 2D 23Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The 23Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR (1H, 23Na, and 93Nb)

    Effect of Dietary Laminaria digitata with Carbohydrases on Broiler Production Performance and Meat Quality, Lipid Profile, and Mineral Composition

    Get PDF
    This article belongs to the Section Animal Nutrition.Simple Summary: Seaweeds represent promising alternatives to unsustainable conventional feed sources, such as cereals, incorporated in poultry diets. Brown macroalgae (e.g., Laminaria digitata) correspond to the largest cultured algal biomass worldwide and are rich in bioactive polysaccharides, minerals, and antioxidant pigments. However, their utilization as feed ingredients is limited due to the presence of an intricate gel-forming cell wall composed of indigestible carbohydrates, mainly alginate and fucose-containing sulfated polysaccharides. Therefore, supplementation with carbohydrate-active enzymes is required to disrupt the cell wall and allow seaweed nutrients to be digested and absorbed in poultry gut. The present study aimed to evaluate if the dietary inclusion of 15% L. digitata, supplemented or not with carbohydrases, could improve the nutritional value of poultry meat without impairing growth performance of broiler chickens. The results show that L. digitata increases antioxidant pigments and n-3 long-chain polyunsaturated fatty acids in meat, thus improving meat nutritional and health values. On the other hand, feeding algae at a high incorporation level impaired growth performance. Feed enzymatic supplementation had only residual effects, although alginate lyase decreased intestinal viscosity caused by dietary L. digitata with potential benefits for broiler digestibility.Abstract: We hypothesized that dietary inclusion of 15% Laminaria digitata, supplemented or not with carbohydrases, could improve the nutritional value of poultry meat without impairing animal growth performance. A total of 120 22-day old broilers were fed the following dietary treatments (n = 10) for 14 days: cereal-based diet (control); control diet with 15% L. digitata (LA); LA diet with 0.005% Rovabio® Excel AP (LAR); LA diet with 0.01% alginate lyase (LAE). Final body weight was lower and feed conversion ratio higher with LA diet than with the control. The ileal viscosity increased with LA and LAR diets relative to control but without differences between LAE and control. The pH of thigh meat was higher, and the redness value of breast was lower with LA diet than with control. Meat overall acceptability was positively scored for all treatments. The γ-tocopherol decreased, whereas total chlorophylls and carotenoids increased in meat with alga diets relative to control. The percentage of n-3 polyunsaturated fatty acids (PUFA) and accumulation of bromine and iodine in meat increased with alga diets compared with control. Feeding 15% of L. digitata to broilers impaired growth performance but enhanced meat quality by increasing antioxidant pigments, with beneficial effects on n-3 PUFA and iodine.The study was funded by the Fundação para a Ciência e a Tecnologia, Portugal, through the PTDC/CAL-ZOO/30238/2017 grant, associated with a postdoctoral contract to M.M.C. and a PhD fellowship to D.C. (SFRH/BD/126198/2016), as well as CIISA (UIDB/00276/2020), AL4AnimalS (LA/P/0059/2020), and LEAF (UIDB/04129/2020) grants.info:eu-repo/semantics/publishedVersio

    An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall

    Get PDF
    Research Areas: Science & Technology - Other TopicsIn the present study, 199 pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases were assessed, either alone or in combination, to evaluate their capacity to disrupt Laminaria digitata cell wall, with the consequent release of interesting nutritional compounds. A previously characterized individual alginate lyase, belonging to the family 7 of polysaccharide lyases (PL7) and produced by Saccharophagus degradans, was shown to be the most efcient in the in vitro degradation of L. digitata cell wall. The alginate lyase treatment, compared to the control, released up to 7.11 g/L of reducing sugars (p< 0.001) and 8.59 mmol/100 g dried alga of monosaccharides (p< 0.001), and reduced cell wall fuorescence intensity by 39.1% after staining with Calcofuor White (p= 0.001). The hydrolysis of gel-forming polymer alginate by the alginate lyase treatment could prevent the trapping of fatty acids and release benefcial monounsaturated fatty acids, particularly 18:1c9 (p < 0.001), to the extracellular medium. However, no liberation of proteins (p > 0.170) or pigments (p > 0.070) was observed. Overall, these results show the ability of an individual alginate lyase, from PL7 family, to partially degrade L. digitata cell wall under physiological conditions. Therefore, this CAZyme can potentially improve the bioavailability of L. digitata bioactive compounds for monogastric diets, with further application in feed industry.info:eu-repo/semantics/publishedVersio

    Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds

    Get PDF
    ReviewSeaweeds have caught the attention of the scientific community in recent years. Their production can mitigate the negative impact of anthropogenic activity and their use in animal nutrition reduces the dependency on conventional crops such as maize and soybean meal. In the context of monogastric animals, novel approaches have made it possible to optimise their use in feed, namely polysaccharide extraction, biomass fermentation, enzymatic processing, and feed supplementation with carbohydrate-active enzymes (CAZymes). Their bioactive properties make them putative candidates as feed ingredients that enhance meat quality traits, such as lipid oxidation, shelf-life, and meat colour. Indeed, they are excellent sources of essential amino acids, polyunsaturated fatty acids, minerals, and pigments that can be transferred to the meat of monogastric animals. However, their nutritional composition is highly variable, depending on species, harvesting region, local pollution, and harvesting season, among other factors. In this review, we assess the current use and challenges of using seaweeds in pig and poultry diets, envisaging to improve meat quality and its nutritional valueinfo:eu-repo/semantics/publishedVersio

    Effects of Chlorella vulgaris as a feed ingredient on the quality and nutritional value of weaned piglets' meat

    Get PDF
    Chlorella vulgaris (CH) is usually considered a feed supplement in pig nutrition, and its use as an ingredient is poorly studied. Among many interesting characteristics, this microalga has high protein levels and can be a putative alternative for soybean meal. Our aim was to study the effect of a 5% CH incorporation in the diet, individually or combined with two carbohydrases, on meat quality traits and nutritional value. Forty-four post-weaned male piglets individually housed, with an initial live weight of 11.2 0.46 kg, were randomly distributed into four experimental groups: control (n = 11, without CH) and three groups fed with 5% CH incorporation, plain (n = 10), with 0.005% Rovabio® Excel AP (n = 10), and with 0.01% of a pre-selected four-CAZyme mixture (n = 11). After two weeks of trial, piglets were slaughtered and longissimus lumborum collected. CH had no effect on piglets’ growth performance. In turn, incorporation of CH improved the nutritional value of meat by increasing total carotenoids and n-3 PUFA content, thus contributing to a more positive n-6/n-3 fatty acid ratio. The supplementation with Rovabio® benefited tenderness and increased overall acceptability of pork. Our results show beyond doubt the viability of the utilization of this microalga as a feed ingredient for swine productioninfo:eu-repo/semantics/publishedVersio

    Influence of Feeding Weaned Piglets with Laminaria digitata on the Quality and Nutritional Value of Meat

    Get PDF
    Laminaria digitata is a novel feedstuff that can be used in pig diets to replace conventional feedstuffs. However, its resilient cell wall can prevent the monogastric digestive system from accessing intracellular nutrients. Carbohydrate-active enzyme (CAZyme) supplementation is a putative solution for this problem, degrading the cell wall during digestion. The objective of this work was to evaluate the effect of 10% L. digitata feed inclusion and CAZyme supplementation on the meat quality and nutritional value of weaned piglets. Forty weaned piglets were randomly allocated to four experimental groups (n = 10): control, LA (10% L. digitata, replacing the control diet), LAR (LA + CAZyme (0.005% Rovabio® Excel AP)) and LAL (LA + CAZyme (0.01% alginate lyase)) and the trial lasted for two weeks. The diets had no effect on any zootechnical parameters measured (p > 0.05) and meat quality traits, except for the pH measured 24 h post-mortem, which was higher in LAL compared to LA (p = 0.016). Piglets fed with seaweed had a significantly lower n-6/n-3 PUFA ratio compared to control, to which the higher accumulation of C20:5n-3 (p = 0.001) and C18:4n-3 (p < 0.0001) contributed. In addition, meat of seaweed-fed piglets was enriched with bromine (Br, p < 0.001) and iodine (I, p < 0.001) and depicted a higher oxidative stability. This study demonstrates that the nutritional value of piglets’ meat could be improved by the dietary incorporation of L. digitata, regardless of CAZyme supplementation, without negatively affecting growth performance in the post-weaning stageinfo:eu-repo/semantics/publishedVersio

    Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers

    Get PDF
    ResearchBackground: Chlorella vulgaris has been proposed as a sustainable green feedstock in poultry nutrition due to its ease of cultivation, minimal environmental impact and balanced nutritional composition. However, the majority of studies documents the use of C. vulgaris as a dietary supplement in broilers instead of a feed ingredient. To the best of our knowledge, no report has shown the effect of a high-level incorporation (>2 % in the diet) of C. vulgaris on plasma metabolites and hepatic lipid composition of broilers. One hundred and twenty Ross 308 male birds were housed in 40 wired-floor cages and randomly distributed by the following experimental diets at 22 days of age (n = 10) during 15 days: (1) a corn-soybean meal based diet (control); (2) based diet with 10% of C. vulgaris; (3) diet 2 supplemented with 0.005% Rovabio® Excel AP; and (4) diet 2 supplemented with 0.01% of a pre-selected four-CAZyme mixture. Results: The inclusion of C. vulgaris at 10% in the diet, regardless of the presence of exogenous CAZymes, changed plasma metabolites but did not compromise broilers growth. Plasma total lipids increased in broilers fed C. vulgaris combined with the two feed CAZymes (p < 0.001) compared with the control diet. Moreover, the supplementation with Rovabio® increased total cholesterol and LDL-cholesterol, while the addition of the four-CAZyme mixture increased triacylglycerols, VLDL-cholesterol and ALP activity. In opposition, HDL-cholesterol levels decreased in broilers fed microalga alone (p = 0.002). Regarding hepatic composition, the inclusion of C. vulgaris in broiler diets, individually or combined with exogenous CAZymes, had a minor effect on fatty acids but improved the n-6/n-3 ratio and total carotenoids. Conclusions: In summary, the inclusion of a high level (10%) of C. vulgaris in broiler´s diet, regardless of the presence of exogenous CAZymes, improved hepatic antioxidant composition and did not impair broiler’s performance. In addition, the feed supplementation with CAZymes increased broilers lipemia. Therefore, dietary C. vulgaris at this incorporation level seems to be safe for animal health and do not compromise performance traits, with no need of CAZymes supplementationinfo:eu-repo/semantics/publishedVersio
    • …
    corecore