3,455 research outputs found

    X-ray method to study temperature-dependent stripe domains in MnAs/GaAs(001)

    Full text link
    MnAs films grown on GaAs (001) exhibit a progressive transition between hexagonal (ferromagnetic) and orthorhombic (paramagnetic) phases at wide temperature range instead of abrupt transition during the first-order phase transition. The coexistence of two phases is favored by the anisotropic strain arising from the constraint on the MnAs films imposed by the substrate. This phase coexistence occurs in ordered arrangement alternating periodic terrace steps. We present here a method to study the surface morphology throughout this transition by means of specular and diffuse scattering of soft x-rays, tuning the photon energy at the Mn 2p resonance. The results show the long-range arrangement of the periodic stripe-like structure during the phase coexistence and its period remains constant, in agreement with previous results using other techniques.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Magnetic reconfiguration of MnAs/GaAs(001) observed by Magnetic Force Microscopy and Resonant Soft X-ray Scattering

    Full text link
    We investigated the thermal evolution of the magnetic properties of MnAs epitaxial films grown on GaAs(001) during the coexistence of hexagonal/orthorhombic phases using polarized resonant (magnetic) soft X-ray scattering and magnetic force microscopy. The results of the diffuse satellite X-ray peaks were compared to those obtained by magnetic force microscopy and suggest a reorientation of ferromagnetic terraces as temperature rises. By measuring hysteresis loops at these peaks we show that this reorientation is common to all ferromagnetic terraces. The reorientation is explained by a simple model based on the shape anisotropy energy. Demagnetizing factors were calculated for different configurations suggested by the magnetic images. We noted that the magnetic moments flip from an in-plane mono-domain orientation at lower temperatures to a three-domain out-of-plane configuration at higher temperatures. The transition was observed when the ferromagnetic stripe width L is equal to 2.9 times the film thickness d. This is in good agreement with the expected theoretical value of L = 2.6d.Comment: 16 pages in PD

    Vinhos que pensam - parte ii|iii: utilização da condutividade elétrica aparente do solo na instalação e gestão das culturas: exemplificação na vinha

    Get PDF
    Vinhos que pensam - parte ii|iii: utilização da condutividade elétrica aparente do solo na instalação e gestão das culturas: exemplificação na vinh

    Vinhos que pensam - parte i|iii: gestão do vigor vegetativo da vinha a partir de sensores ativos multiespectrais próximos

    Get PDF
    Vinhos que pensam - parte i|iii: gestão do vigor vegetativo da vinha a partir de sensores ativos multiespectrais próximo

    Tangent Velocity constraint for orbital maneuvers with Theory of Functional Connections

    Full text link
    Maneuvering a spacecraft in the cislunar space is a complex problem, since it is highly perturbed by the gravitational influence of both the Earth and the Moon, and possibly also the Sun. Trajectories minimizing the needed fuel are generally preferred in order to decrease the mass of the payload. A classical method to constrain maneuvers is mathematically modelling them using the Two Point Boundary Value Problem (TPBVP), defining spacecraft positions at the start and end of the trajectory. Solutions to this problem can then be obtained with optimization techniques like the nonlinear least squares conjugated with the Theory of Functional Connections (TFC) to embed the constraints, which recently became an effective method for deducing orbit transfers. In this paper, we propose a tangential velocity (TV) type of constraints to design orbital maneuvers. We show that the technique presented in this paper can be used to transfer a spacecraft (e.g. from the Earth to the Moon) and perform rendezvous maneuvers (e.g. a swing-by with the Moon). In comparison with the TPBVP, solving the TV constraints via TFC offers several advantages, leading to a significant reduction in computational time. Hence, it proves to be an efficient technique to design these maneuvers.Comment: Submitted to Scientific Report

    Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea

    Get PDF
    Downy mildew caused by Hyaloperonospora brassicae is an economically destructive disease of brassica crops in many growing regions throughout the world. Specialised pathogenicity of downy mildews from different Brassica species and closely related ornamental or wild relatives has been described from host range studies. Pathotypic variation amongst Hyaloperonospora brassicae isolates from Brassica oleracea has also been described; however, a standard set of B. oleracea lines that could enable reproducible classification of H. brassicae pathotypes was poorly developed. For this purpose, we examined the use of eight genetically refined host lines derived from our previous collaborative work on downy mildew resistance as a differential set to characterise pathotypes in the European population of H. brassicae. Interaction phenotypes for each combination of isolate and host line were assessed following drop inoculation of cotyledons and a spectrum of seven phenotypes was observed based on the level of sporulation on cotyledons and visible host responses. Two host lines were resistant or moderately resistant to the entire collection of isolates, and another was universally susceptible. Five lines showed differential responses to the H. brassicae isolates. A minimum of six pathotypes and five major effect resistance genes are proposed to explain all of the observed interaction phenotypes. The B. oleracea lines from this study can be useful for monitoring pathotype frequencies in H. brassicae populations in the same or other vegetable growing regions, and to assess the potential durability of disease control from different combinations of the predicted downy mildew resistance genes

    Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems
    • …
    corecore