14 research outputs found

    Representação e interpretação Caminhos para inclusão de crianças com deficiências no jornalismo

    Get PDF
    Com base em estudos de Hall, Woodward e Medina, o artigo ressalta a importância do jornalismo como grande influenciador na construção de representações inclusivas de crianças com deficiências na sociedade. A análise cultural da reportagem da Revista Época, sobre microcefalia em bebês de mães que contraíram Zika durante a gravidez sugere o Jornalismo Interpretativo como um possível caminho inclusivo.Palavras-chave: Identidade. Representação. Jornalismo Interpretativo. Inclusão.Representación e interpretación: Caminos para la inclusión de niños con discapacidades en el periodismoResumen: Con base en los estudios de Hall, Woodward y Medina, este artículo resalta la importancia del periodismo como influyente en la construcción de representaciones inclusivas de niños con discapacidades en la sociedad. El análisis cultural del reportaje, en la Revista Época, sobre microcefalia en bebés de madres que contrajeron a Zika durante el embarazo sugiere el Periodismo Interpretativo como posible camino inclusivo.Palabras clave: Identidad. Representación. Periodismo Interpretativo. Inclusión.Representation and interpretation: Paths for inclusion of children with disabilities in journalismAbstract: Based on studies by Hall, Woodward and Medina, this article highlights the importance of journalism as major influencer in building inclusive representations of children with disabilities in society. The cultural analysis of the report on microcephaly in infants of mothers who contracted Zika during pregnancy, published in Época Magazine, suggests Interpretive Journalism, of dialogic principles, as a possible path.Keywords: Identity. Representation. Interpretive Journalism. Inclusion

    Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    Get PDF
    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the beta 3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)INCT Nanocarbono - UFMG (Brazil)Univ Fed Minas Gerais, Dept Physiol & Biophys, Belo Horizonte, MG, BrazilUniv Fed Sao Joao del Rei, Dept Nat Sci, Sao Joao Del Rei, MG, BrazilUniv Fed Ceara, Dept Phys, Fortaleza, CE, BrazilUniv Fed Sao Paulo, Dept Biophys, Sao Paulo, SP, BrazilUniv Fed Minas Gerais, Dept Phys, Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Dept Morphol, Belo Horizonte, MG, BrazilDepartment of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, BrazilWeb of Scienc

    HISTÓRIAS DE CRIANÇAS COM DEFICIÊNCIA: POR UM JORNALISMO QUE NARRA E DÁ VOZ

    No full text
    Este artigo propõe discussões sobre como, por meio da compreensão de narrativas míticas, dialógicas e produtoras de conhecimento, seremos capazes de contar histórias e tecer narrativas mais humanas e ternas no exercício do jornalismo. As narrativas míticas são histórias compartilhadas por toda a humanidade na tentativa de significar e dar respostas às questões humanas mais profundas. Argumenta-se, então, como as narrativas jornalísticas, a exemplo das míticas, podem tornar visíveis questões importantes como o reconhecimento das crianças com deficiência de modo inclusivo, com o objetivo de exercer real influência em nossa sociedade, e criar uma realidade, mais justa e igualitária, baseada no princípio do respeito às diferenças. Tendo como base teórica o pensamento de Carl Jung, Joseph Campbell, Karen Armstrong, Hannah Arendt, Martin Buber e Cremilda Medina, o texto traz indicações de como cultivar a compreensão na prática do jornalismo. Tomamos, como exemplo, os textos da jornalista Eliane Brum que quebram o paradigma do jornalismo tradicional, alterando seu foco e dando voz às pessoas antes esquecidas, narrando com afeto o que é estar vivo e afirmando o protagonismo e a importância de cada ser humano. São analisadas, ainda, duas matérias da Revista Crescer sobre crianças com deficiências.</p

    Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration.

    No full text
    The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet.Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration.We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein.ACE activation regulates melanoma cell proliferation and migration

    ACE silencing inhibits the proliferative effect of Ang-II in melanoma cells.

    No full text
    <p>(A) Western bot (upper panel) to confirm the silencing of ACE and densitometry analysis (bottom panel). Mean ± S.E.M, n = 8. (***p<0.01 compared to respective columns). (B) BrDU uptake in Tm5 cells silenced for ACE and stimulated for 24 hours with Ang-II (1μM), showing a decrease in BrDU incorporation in the absence of ACE. Mean ± S.E.M., n = 12 (*p<0.05; ns = non-significant).</p

    Ang-II promotes cellular migration and reduces focal adhesion formation in melanoma cells.

    No full text
    <p>(A-B) Wound healing assay using TM-5 cells stimulated with Ang-II (1μM). C) Representative confocal images of TM-5 cells double-labeled with vinculin (green) and phalloidin (red). Scale bar = 10 μm. (D-E) Quantification of the focal adhesion formation. Mean ± S.E.M., n = 6 (* p<0.05).</p

    Ang-II induces ACE translocation to the nucleus.

    No full text
    <p>(A) Internalization of AT<sub>1</sub> and ACE in the presence of 4 nM <sup>3</sup>H-Ang-II. Data are shown as mean from three independent experiments, each performed in duplicate. (B) CHO-ACE and CHO-AT<sub>1</sub> cells present the same relative protein level of each respective receptor. (Values are mean ± S.E.M, *p<0.05, n = 63 individual experiments). (C) Representative confocal images of internalized Ang-II-FITC (1 μM) in CHO-ACE and CHO-AT<sub>1</sub> cells after 30 seconds of Ang-II stimulation. DAPI (blue) and Wheat Germ Agglutinin (red), scale bar = 10 μm. On the right, quantification of internalized Ang-II-FITC is presented. Values are mean ± S.E.M, *p<0.05, n = 6. (D) Representative confocal images of unstimulated CHO-ACE and CHO-AT1 cells, labeled for DAPI and WGA. (E) Immunolocalization of ACE after stimulation with Ang-II (1μM), for the indicated times. ACE is shown in green, actin filaments in red, and nucleus in blue (DAPI). Right panel represents a 3D reconstruction of CHO-ACE cell after 15 minutes of incubation with Ang-II (1μM). Scale bar = 10μm. (F) Western blotting of nuclear and non-nuclear protein fractions from CHO-ACE cells, before (control) and after Ang-II (1 μM) stimulation for the indicated times. Histone-3 and GAPDH were used to shown the purification of nuclear and non-nuclear protein fractions, respectively. (G) Densitometry analysis of the western blot. Values are mean ± S.E.M., n = 3 (*** p<0.01).</p

    Cell proliferation induced by Ang-II/ACE involves clathrin- mediated internalization process.

    No full text
    <p>(A) Cell growth assay of CHO-ACE cells 12, 24 and 48 hours after stimulation with Ang-II (1μM), triplicate in 3 individual experiments. (B) Western blot to confirm the silencing of clathrin (upper panel) and densitometry analysis (bottom panel). Mean ± S.E.M., n = 5 (* p<0.05). (C) BrDU incorporation is decreased in CHO-ACE cells transfected with siRNA-Cla (Clathrin) and stimulated with Ang-II (1μM). Mean ± S.E.M., n = 6 (* p<0.05).</p

    Molecular interaction between ACE and PLC by computational analysis in silico.

    No full text
    <p>(A) Representation of the ten top ranked docking poses for ACE (blue) with PLCβ3 protein superimposed (the color of the PLC protein pose correspond to the colors of the labels). (B) Structure of the complex between ACE (blue) and PLC-β3 (Pose 9, red). The binding energy for the best docking pose of ACE and PLC-β3, Pose 9, is -194.06 kcal/mol. C) Amino acid residues located at the interface between the best docking pose of PLC-β3 (left panel) and ACE (right panel), Pose 9, explored through docking protocols.</p
    corecore