7,016 research outputs found

    Characterizing a configuration interaction excited state using natural transition geminals

    Full text link
    We introduce natural transition geminals as a means to qualitatively understand a transition where double excitations are important. The first two A1A_{1} singlet states of the CH cation are used as an initial example. We calculate these states with configuration interaction singles (CIS) and state-averaged Monte Carlo configuration interaction (SA-MCCI). For each method we compare the important natural transition geminals with the dominant natural transition orbitals. We then compare SA-MCCI and full configuration interaction (FCI) with regards to the natural transition geminals using the beryllium atom. We compare using the natural transition geminals with analyzing the important configurations in the CI expansion to give the dominant transition for the beryllium atom and the carbon dimer. Finally we calculate the natural transition geminals for two electronic excitations of formamide.Comment: 15 pages, 2 figures. Mol. Phys. (2013

    Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction

    Get PDF
    We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H4_{4} molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis.Comment: 11 pages, 14 figure

    Machine Learning Configuration Interaction

    Full text link
    We propose the concept of machine learning configuration interaction (MLCI) whereby an artificial neural network is trained on-the-fly to predict important new configurations in an iterative selected configuration interaction procedure. We demonstrate that the neural network can discriminate between important and unimportant configurations, that it has not been trained on, much better than by chance. MLCI is then used to find compact wavefunctions for carbon monoxide at both stretched and equilibrium geometries. We also consider the multireference problem of the water molecule with elongated bonds. Results are contrasted with those from other ways of selecting configurations: first-order perturbation, random selection and Monte Carlo configuration interaction. Compared with these other serial calculations, this prototype MLCI is competitive in its accuracy, converges in significantly fewer iterations than the stochastic approaches, and requires less time for the higher-accuracy computations.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in The Journal of Chemical Theory and Computation, copyright American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/articlesonrequest/AOR-dANIFXJKzRAyR99E6hb

    Applying Monte Carlo configuration interaction to transition metal dimers: exploring the balance between static and dynamic correlation

    Get PDF
    We calculate potential curves for transition metal dimers using Monte Carlo configuration interaction (MCCI). These results, and their associated spectroscopic values, are compared with experimental and computational studies. The multireference nature of the MCCI wavefunction is quantified and we estimate the important orbitals. We initially consider the ground state of the chromium dimer. Next we calculate potential curves for Sc2_{2} where we contrast the lowest triplet and quintet states. We look at the molybdenum dimer where we compare non-relativistic results with the partial inclusion of relativistic effects via effective core potentials, and report results for scandium nickel.Comment: 9 pages and 8 figure

    Effects of wing leading-edge deflection on low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration

    Get PDF
    Static force tests were conducted in the Langley V/STOL tunnel at a Reynolds number (based on the mean aerodynamic chord) of about 2.0 x 10 to the 6th power for an angle-of-attack range from about - 10 deg to 17 deg and angles of sideslip of 0 and + or - 5 deg. Limited flow visualization studies were also conducted in order to provide a qualitative assessment of leading-edge upwash characteristics

    Population Dynamics in the Penna Model

    Full text link
    We build upon the recent steady-state Penna model solution, Phys.Rev.Lett. 89, 288103 (2002), to study the population dynamics within the Penna model. We show, that any perturbation to the population can be broken into a collection of modes each of which decay exponentially with its respective time constant. The long time behaviour of population is therefore likely to be dominated by the modes with the largest time constants. We confirm our analytical approach with simulation data.Comment: 6 figure

    The X-ray Transient XTE J2012+381

    Get PDF
    We present optical and infrared observations of the soft X-ray transient (SXT) XTE J2012+381 and identify the optical counterpart with a faint red star heavily blended with a brighter foreground star. The fainter star is coincident with the radio counterpart and appears to show weak H alpha emission and to have faded between observations. The RXTE/ASM lightcurve of XTE J2012+381 is unusual for an SXT in that after an extended linear decay, it settled into a plateau state for about 40 days before undergoing a weak mini-outburst. We discuss the nature of the object and suggest similarities to long orbital period SXTs.Comment: 5 pages, 7 postscript figures included, uses mn.sty. Accepted for publication in MNRA

    Exact and LDA entanglement of tailored densities in an interacting one-dimensional electron system

    Full text link
    We calculate the `exact' potential corresponding to a one-dimensional interacting system of two electrons with a specific, tailored density. We use one-dimensional density-functional theory with a local-density approximation (LDA) on the same system and calculate densities and energies, which are compared with the `exact' ones. The `interacting-LDA system' corresponding to the LDA density is then found and its potential compared with the original one. Finally we calculate and compare the spatial entanglement of the electronic systems corresponding to the interacting-LDA and original interacting system.Comment: 7 pages, 4 figure

    Low-speed wind tunnel investigation of an advanced supersonic cruise arrow-wing configuration

    Get PDF
    A preliminary assessment of possible means for improving the low speed aerodynamic characteristics of advanced supersonic cruise arrow wing configurations and to extend the existing data base of such configurations has been made. Principle configuration variables included wing-leading and trailing-edge flap deflection, fuselage nose strakes, and engine exhaust nozzle deflection. Results showed that deflecting the wing leading edge apex flaps downward provided improved longitudinal stability but resulted in reduced directional stability. The model exhibited relatively low values of directional stability over the operational angle of attack range and experienced large asymmetric yawing moments at high angles of attack. The use of nose strakes was found to be effective in increasing the directional stability and eliminating the asymmetric yawing moment
    corecore