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Applying Monte Carlo configuration interaction to transition metal dimers:
exploring the balance between static and dynamic correlation

J. P. Coea, P. Murphya, M. J. Patersona

aInstitute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United
Kingdom.

Abstract

We calculate potential curves for transition metal dimers using Monte Carlo configuration interaction (MCCI). These
results, and their associated spectroscopic values, are compared with experimental and computational studies. The
multireference nature of the MCCI wavefunction is quantified and we estimate the important orbitals. We initially
consider the ground state of the chromium dimer. Next we calculate potential curves for Sc2 where we contrast the
lowest triplet and quintet states. We look at the molybdenum dimer where we compare non-relativistic results with the
partial inclusion of relativistic effects via effective core potentials, and report results for scandium nickel.

Keywords: Transition metal dimers. Monte Carlo. Configuration interaction.

1. Introduction

Transition metals can be very challenging for compu-
tational chemistry methods due to the existence of many
important configurations at numerous geometries. This
means that methods that can cope with multireference
systems, and their associated computational costs, are of-
ten necessary. In addition, accurate modelling of heavy
transition metals may also require relativistic effects to be
incorporated.

Although full configuration interaction (FCI) will pro-
duce the most accurate wavefunction in a given basis, the
number of configurations that would need to be considered
for transition metal dimers makes this method currently
computationally intractable. A powerful approach to at-
tempt to overcome this problem is complete active space
SCF (CASSCF) [1] which efficiently calculates a wavefunc-
tion comprising all configurations formed from substitu-
tions within a restricted set of orbitals by optimising coef-
ficients and orbitals. This method is thought to model
much of the static correlation which is associated with
a few important configurations in the FCI wavefunction.
The remaining difference is then termed dynamic correla-
tion and this can be accounted for by multireference CI
(MRCI) or perturbative corrections such as CASPT2 [2].

Monte Carlo configuration interaction (MCCI) [3] aims
to find a compact, yet sufficiently accurate, description of
the FCI wavefunction by iteratively building up a wave-
function through the random addition of configurations
without requiring knowledge of the important orbitals be-
fore a calculation. Recent successful applications of MCCI
include excitation energies [4, 5] and properties [6]. MCCI
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with complex wavefunctions has been used in the mod-
elling of a tunnel junction consisting of gold atoms [7].
MCCI has been demonstrated to produce potential curves
of ground states [8] that generally compared favourably
with the FCI results using just a small fraction of the
FCI space for small molecules. Excited potential curves,
including avoided crossings and conical intersections, for
small systems were seen to be similar to FCI results, but
used a compact wavefunction when calculated with SA-
MCCI in Ref. [5]. It is therefore interesting to investigate
the potential curves of transition metal dimers with MCCI
as a stern test of the method when the division between
static and dynamic correlation becomes blurred and for the
possibility of supporting the choice of active spaces as ap-
propriate in other computational work. We aim to demon-
strate that MCCI can model a selection of transition metal
dimers without prior knowledge of the important orbitals
or resorting to perturbative corrections. The compact na-
ture of the MCCI wavefunction then allows us to quan-
tify its multireference character using all of the included
configurations. We also estimate the important orbitals
for a representative sample of the considered geometries.
We compare the MCCI calculations with other compu-
tational work and experimental results for the chromium
dimer with a cc-pVDZ and cc-pVTZ basis then Sc2 with
the same bases. We then look at the potential curve for
the molybdenum dimer using a minimal basis (STO-3G)
followed by LANL2DZ and Stuttgart RSC to approximate
relativistic corrections. Finally we consider ScNi, with the
STO-3G basis, as an example of a heteronuclear diatomic.
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2. Method

We use version four of the MCCI program [3, 9]. We al-
ways use the Hartree-Fock (HF) molecular orbitals (MOs)
for consistency and the necessary integrals are calculated
using Molpro [10]. The MOs are employed in the follow-
ing calculations which begin from the configuration state
function (CSF) formed from the occupied HF MOs. The
current set of CSFs is augmented with new CSFs created
using symmetry-preserving random single and double sub-
stitutions of MOs. The Hamiltonian matrix is created and
diagonalized in this set of CSFs and any new configura-
tions with an absolute coefficient less than cmin in the re-
sulting wavefunction are removed. The process is repeated
and every ten iterations all CSFs in the wavefunction are
considered for removal (full pruning). The program is run
until the convergence criterion for the energy, as detailed
in Ref. [4], is satisfied. We consider the average energy
for the last three full pruning steps. Results were cal-
culated using an initial 10−3 Hartree convergence check
and then a 5 × 10−4 Hartree convergence check unless
otherwise stated. We implement calculations initially at
cmin = 5 × 10−4 then lower this value until a sufficiently
smooth potential curve is achieved.

We calculate vibrational energy levels of the potential
curve for the most abundant isotopes with the program
LEVEL 8.0 [11]. The transition metal potential curves
can display a secondary well and will not adhere to the
form of the Morse potential [12]. We therefore use the
lowest energy level to approximate the harmonic vibra-
tional frequency (ωe). Due to MCCI not being size con-
sistent, we calculate dissociation energies as the difference
between the energy at equilibrium, with the ground state
vibrational energy included, and the longest bond length
considered.

We quantify the multireference character associated
with the MCCI wavefunction for a given basis and set of
MOs using

MR =
∑

i

|ci|2 − |ci|4. (1)

Here the ci are normalised so that
∑

i |ci|2 = 1. The
expression is approximate when using CSFs due to their
non-orthogonality. A value of zero will result from a sin-
gle configuration in the wavefunction while unity will be
approached as the coefficients become equal in magnitude
and more numerous. We also measure the importance of
MOs in the MCCI wavefunction by considering the per-
centage of configurations they occur in where each occur-
rence is weighted by |ci|2.

3. Results

3.1. Chromium dimer

The availability of a potential curve based on experi-
mental results and the difficulty of the system to model
makes Cr2 useful for testing methods. The fitted curve

[13] did not display the barrier necessary for a double
well, as was seen in an early computational study [14],
but due to a lack of vibrational data the experimental
potential is not known as accurately in this region. The
bond length has been found experimentally as Re = 1.6788
Å [15] and the dissociation energy has been measured as
1.53± 0.06 eV in Ref. [16] while Ref. [13] finds ωe = 480.6
cm−1 and ωeχe = 14.1 cm−1. For theoretical results,
it appears that a good treatment of both dynamic and
static correlation is necessary to give a sufficiently accu-
rate potential energy curve: Ref. [17] depicts how the po-
tential curve from CASSCF(12,12) is seen to be repulsive
for small bond lengths with a weakly attractive minimum
around 3 Å, but CASPT2 can produce a realistic poten-
tial. CASPT2 and similar approaches have also been used
in, e.g., Ref. [18, 19, 20, 21] with generally high accuracy.
Ref. [18] found the curve was dependent on the choice of
zeroth-order Hamiltonian, but is particularly close to ex-
perimental results when using CASPT2 IPEA 0.45 with
the equilibrium bond lengths found to be around 1.68 Å
and D0 = 1.50 eV with a vibrational interval of 542 cm−1.
However CASPT2 results in [21] were not so accurate and
found a longer bond length of 2.43 Å and a lower dis-
sociation energy of 1.0 eV. Multireference coupled clus-
ter [22] gave complete basis set estimates of Re = 1.685,
D0 = 1.327 eV and ωe = 459 cm−1. A double well was
observed when using a TZP basis but not with a QZP
basis.

When using MCCI to model an Ag singlet in Cr2, we
freeze 18 orbitals and, for consistency in the HF curve,
we require that the HF wavefunctions have the same oc-
cupation of orbitals from each symmetry class. The HF
energies at 1.4 Å were −2085.9767 Hartree for cc-pVDZ
and −2085.9945 Hartree for cc-pVTZ. With the cc-pVDZ
basis and cmin = 5 × 10−4, the energy at bond lengths of
6 and 3.5 Å appeared as though they may be anomalously
high when using a convergence check of 10−3 Hartree. We
attempted to improve the energies at these points by us-
ing the result of the next shorter bond length as a starting
point. The energy at R = 6 Å was improved substantially
using this approach but the R = 3.5 Å calculation did not
give a lower energy. A small barrier remains in this region
when using a tighter convergence check suggesting that it
may be a feature of the MCCI calculation at this cmin.
We then considered a lower cut-off of cmin = 2 × 10−4.
Here one point was not calculated due to time constraints.
The results were closer to the experimental curve, but a
secondary well was now seen.

For the cc-pVTZ basis we initially used cmin = 5×10−4

however this resulted in a curve which was not smooth.
Hence the points were recalculated using cmin = 2 × 10−4

with the larger cmin result used as the starting point. This
gave a smooth curve except for two points which appeared
too high in energy compared with the rest of the curve:
2.75 and 6 Å. They were much improved when the calcu-
lation was restarted using the configurations of the next
shorter bond length as the starting point. The results are
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displayed in Fig. 1 with the fitted experimental results
from Ref. [13] also plotted for comparison. The results
agree with the experimental curve for the inner wall and
equilibrium geometry, but at intermediate geometries the
cc-pVDZ curve increases too rapidly and this effect is more
pronounced when using the cc-pVTZ basis although this
increase is moderated when using cc-pVDZ with the lower
cmin. We note that CASPT2 results can be very close to
the experimental curve but this requires tailoring of both
the active space and zeroth-order Hamiltonian.
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Figure 1: Energy (Hartree) shifted so that all minima are at zero
against bond length (Å) for the chromium dimer for the experimental
results compared with MCCI (cmin = 5× 10−4 or cmin = 2× 10−4)
using cc-pVDZ and MCCI (cmin = 2 × 10−4) using cc-pVTZ both
with 18 frozen orbitals. Inset: An enlarged view of the minima.

On lowering the cut-off in cc-pVDZ the vibrational fre-
quency changed from 734 to 490 cm−1 giving a better
agreement with experiment, but the dissociation energy re-
duced from 1.41 to 1.22 eV. The equilibrium bond length
changed from approximately 1.65 to 1.70 Å. For the cc-
pVTZ results we find that the vibrational frequency is 530
cm−1 and D0 = 2.32 eV. We see that the larger basis
gives a dissociation energy which is too high compared
with the experimental result of 1.53 eV [16] and other
computational work. This suggests that the MCCI curve
is improved around the equilibrium more than when ap-
proaching dissociation for this cmin when increasing the
basis size to cc-pVTZ. The equilibrium bond length was
approximately 1.65 Å when using cc-pVTZ. This geome-
try is in reasonable agreement with the experimental result
given the number of points considered.

The FCI space for cc-pVDZ is around 1015 SDs when
freezing 18 orbitals and taking symmetry into account
while MCCI used approximately 3.1 × 104 CSFs on av-
erage with the larger cutoff and 1.2× 105 with the smaller
cutoff. For cc-pVTZ there are 1018 SDs in the FCI space
and 1.2×105 CSFs in the MCCI wavefunction on average.
The variation in the size of the MCCI wavefunction with
geometry is depicted in Fig. 2 where the smooth curve
suggests that the method is treating different geometries
reasonably consistently as there are no single points which
stand out as having been fortuitously calculated to differ-
ent accuracy within MCCI. When considering the number

of CSFs, the system appears to be most challenging at
intermediate geometries a little longer than equilibrium.
The multireference character for the MCCI wavefunction
with these MOs is high all along the curve (inset of Fig. 2)
and increases with bond length to essentially saturate on
the scale of the graph despite the number of configura-
tions falling as dissociation is approached. The very large
FCI space for cc-pVTZ and strong multireference charac-
ter may be partly responsible for the large dissociation
energy as a smaller fraction of the FCI space is consid-
ered compared with cc-pVDZ at either cut-off despite us-
ing wavefunctions containing up to 1.6× 105 CSFs.

We extrapolate the cmin = 2× 10−4 results to approx-
imate the complete basis set limit (CBS). The scheme of
Ref. [23] is used for the CBS limit for the Hartree Fock
energy where Ex = E∞ + A(x + 1)e−9

√
x. Here x = 2

for cc-pVDZ and x = 3 for cc-pVTZ. The MCCI correla-
tion energy is extrapolated through the use of Ecorr,x =
Ecorr,∞ + Bx−3 [24]. We find that the estimate does
not change the equilibrium geometry at cc-pVTZ, how-
ever ωe = 488 cm−1 and the overestimate in the binding
energy when we used MCCI with cc-pVTZ is propagated
to the CBS estimate of D0 = 2.75 eV. We acknowledge
that the cc-pVDZ and cc-pVTZ are still reasonably far
from the basis set limit and that MCCI did not appear
so successful at the cut-off used when faced with the very
large configuration space from using the cc-pVTZ basis so
the estimated CBS results should be treated with caution.
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Figure 2: Number of CSFs at convergence for the MCCI wavefunc-
tion against bond length (Å) for the chromium dimer when using
the cc-pVDZ basis or the cc-pVTZ basis at cmin = 2 × 10−4 or
cmin = 5 × 10−4. Inset: A measure of the multireference character
(MR) against bond length (Å)

Defining an important MO as one whose weighted im-
portance is greater than 10% for alpha or beta spin, we
find eight such MOs at R = 1.4 Å while this rises to twelve
for the longest bond length when using cc-pVTZ. The six
non-frozen reference MOs appear to be important at all
geometries sampled and there are 15 important orbitals in
total. For cc-pVDZ with cmin = 2 × 10−4 the reference
MOs also appear in all sampled geometries and there are
10 important orbitals at R = 1.4 Å and 12 at R = 1.6 Å.
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3.2. Scandium dimer

Despite Sc2 being the subject of many studies its ex-
perimental bond length has not been determined and the-
oretical dissociation energies [25, 26, 20, 27] often appear a
little high compared with experimental results. For exam-
ple, GVVPT2 results [20] find D0 = 2.36 eV, ωe = 225.9
cm−1 and Re = 2.57 Å when using cc-pVTZ with the
quintet state lower by 0.23 eV. We use the experimental
dissociation energy of 1.12 ± 0.22 eV from Ref. [28]. For
the vibrational energy levels the experimental results [29]
are ωe = 239.9 cm−1 and ωeχe = 0.93 cm−1 for the Morse
curve. Experimentally the ground state has been given
as a quintet [30]. However the lowest lying triplet 3Σ−

u

and quintet state 5Σ−
u appear to be close in energy and al-

though most theoretical work has found the quintet to be
the ground state [25, 20, 27] the results are not unanimous
[31].

It has been noted, in Ref. [32] and references therein,
that if the active space is not large enough then the ground
state could be a triplet depending on the method used to
deal with intruder configurations. The susceptibility of
the spin of the ground state to the choice of active space,
in addition to the challenge of this being a multireference
system, make this system a particularly interesting can-
didate for MCCI calculations. We calculate the triplet
and quintet curves of Au symmetry in D2h which will
contain the Σ−

u state. The HF energies at 2 Å when us-
ing cc-pVDZ are −1519.3286 Hartree for the quintet and
−1518.0161 Hartree for the triplet while the values for
cc-pVTZ are -1519.3327, and −1518.02451 Hartree. We
freeze 17 orbitals and find that for cmin = 2 × 10−4 suf-
ficiently smooth curves could be observed as depicted in
Fig. 3. Here the final convergence criterion was 10−3 for
cc-pVDZ and 5× 10−4 for cc-pVTZ.
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Figure 3: Sc2 triplet and quintet Au states using the cc-pVDZ or
cc-pVTZ basis, cmin = 2× 10−4 and 17 frozen orbitals.

For the cc-pVDZ results we see that the quintet is the
lower state by 0.33 eV at equilibrium and the triplet curve
shape suggests a crossing between states that would be
of different symmetry in the full D∞h point group. This
agrees with the results of Ref. [20] where the 3Σ−

u and
3Σ−

g cross however in this work the curves are both of Au

symmetry so would be expected to be 3Σ−
u and 3∆u. Our

results indicate an equilibrium geometry of approximately
2.7 Å and we find for the ground vibrational energy level
that ωe = 216 cm−1. We calculate the dissociation en-
ergy as D0 = 2.09 eV. The quintet MCCI results used on
average 43, 497 CSFs compared with an FCI SD space of
around 4 × 1010 when considering symmetries. The FCI
space for the triplet is around 7×1010 SDs when symmetry
is taken into account. The triplet results used 53, 268 CSFs
on average. There is a noticeable change in the number of
configurations after the suggested crossing: the results for
R ≤ 3 Å used ∼ 83000 on average while those for larger R
used ∼ 35000.

When using cc-pVTZ the result at R = 8 Å appeared
too high so we used the configurations of R = 7 Å as a
starting point which resulted in a lower energy. We find
that Re stays at approximately 2.7 Å, ωe = 222 cm−1

and D0 = 2.02 eV. Again the quintet is the ground state
but the gap between the spin states is now 0.45 eV. Here
we calculate the triplet curve only to the implied crossing.
The quintet used 50592 CSFs on average in MCCI com-
pared with an FCI space of 3× 1012 SDs. The triplet cal-
culated to R = 3 Å used 94098 CSFs on average in MCCI
while the FCI space was around 6 × 1012 SDs. The spec-
troscopic values from MCCI in this case are robust against
an increase in the basis size and are similar to many of the
other wavefunction based computational studies with the
accompanying overestimate in D0 compared with experi-
ment.

We see in Fig. 4 that the number of configurations
peaks at intermediate geometries similarly to the Cr2 re-
sults. Compared with Cr2 the system is less strongly mul-
tireference and the multireference character has a local
maximum at an intermediate geometry. The number of
CSFs is not as large in a triple-zeta basis compared with
Cr2 which may be attributed to the smaller FCI space
and slightly lower multireference character. The number
of CSFs and multireference measure suggest that the re-
sult for R = 7 Å in cc-pVDZ may have been calculated less
accurately and the potential energy curve appears to have
a small increase at this point (Fig. 3). However the curves
do not suggest any problems with the cc-pVTZ results
which is perhaps due to the tighter convergence criterion
here. By extrapolating the cc-pVDZ and cc-pVTZ results
for the quintet state to approximate the CBS limit we find
that the minimum remains at 2.7 Å while ωe = 195 cm−1

and D0 = 1.99 eV.
When using cc-pVTZ, the 6 MOs from the reference

wavefunction are found to be important at all sampled
bond lengths and are the only important MOs at the con-
sidered shortest bond lengths. This with the MR results
suggest that the correlation may be thought of as mainly
dynamic at short bond lengths when using these MOs.
The 9 important MOs for the longest bond length used
are the overall important orbitals.
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Figure 4: Number of CSFs at convergence against bond length (Å)
for the scandium dimer using the cc-pVDZ or cc-pVTZ basis. Inset:
A measure of multireference character versus bond length (Å).

3.3. Molybdenum dimer

Molybdenum, with atomic number 42, is the heaviest
element that we consider in this work. Relativistic effects
may therefore be expected to be more important. We com-
pare a non-relativistic result using the STO-3G basis with
the approximation of relativistic effects via an effective
core potential (ECP) basis: the LANL2DZ basis [33].

Experimentally, the equilibrium bond length has been
found [34] to be 1.94 Å. Ref. [35] finds the experimental
bond length as Re = 1.929 Å while ωe = 477.1 cm−1 and
D0 = 4.14 ± 0.65 eV. A more recent study [16] gives the
dissociation energy as 4.474± 0.01 eV.

Computational studies [14, 36, 37] have often produced
relatively good agreement with these spectroscopic con-
stants. For example CASSCF/MS-CASPT2 with a (12,12)
active space and a quadruple-zeta ANO-RCC basis set
gave Re = 1.950 Å, ωe = 459 cm−1 and D0 = 4.41 eV
[37]. However Ref. [21] found D0 = 2.14 eV with CASPT2
using an ECP basis.

We calculate the singlet of Ag symmetry in D2h us-
ing MCCI with cmin = 5 × 10−4. The HF occupancy
was fixed to give a smooth curve for the STO-3G basis,
where, at a bond length of 1.5 Å, the HF energy was
−7870.9969 Hartree. The MCCI results using these MOs
with 36 orbitals frozen are shown in Fig. 5. The MCCI
curve is smooth when the convergence criterion is low-
ered to 5 × 10−4 Hartree and we find that approximately
Re = 1.9 Å, ωe = 467 cm−1 and D0 = 6.4 eV. The MCCI
results used, on average, 13258 CSFs while the FCI space
would be around 4×107 SDs when symmetry is taken into
account. The dissociation energy is too high, but the other
results are in agreement with experiment and much other
computational work. However the minimal basis means
that any comparisons should be made cautiously.

When using the LANL2DZ basis, 56 electrons are taken
into account by the ECP and we then freeze a further 8
orbitals. Here the HF energy at R = 1.5 Å was −132.7382
Hartree. With a convergence check of 10−3, preliminary
results had a sharp jump in energy at R = 2.3 Å so we

use a fixed HF occupancy from R = 2.2 Å onwards and
the configurations of the previous smaller geometry as a
starting point for the MCCI calculation. This produced
a smooth curve except the energy at R = 4 Å appeared
too high. By allowing Molpro [10] to guess the HF initial
occupancy at this point we find that the MCCI result is
in line with the rest of the curve. We then continued the
calculations but with a 5 × 10−4 convergence check and
the results are displayed in Fig. 5. The LANL2DZ results
with cmin = 5×10−4 suggest that the equilibrium geometry
is approximately 2.1 Å. We find that ωe = 253 cm−1 and
D0 = 1.73 eV. This used 27464 CSFs on average compared
with an FCI space of the order of 1011 SDs when symmetry
is taken into account.

The LANL2DZ curve is less strongly binding than the
experimental results and other computational work. We
note that the LANL2DZ basis gave a very low dissociation
energy and excessive bond length for the chromium dimer
using multireference perturbation in Ref. [20]. The shape
suggests that there may be a crossing of two curves of dif-
ferent symmetry within the full D∞h point group. Hence
we also continued the calculations at certain points with
SA-MCCI [5] to investigate the first excited singlet state of
Ag symmetry in D2h. However the results did not reveal
a curve crossing.

We also employed the Stuttgart RSC (relativistic small
core) 1997 ECP basis as stored at the basis set exchange
[38]. In this case the HF energy atR = 1.5 Å was−134.2388
Hartree and the MCCI results were more similar to those
found with LANL2DZ than with STO-3G.
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Figure 5: MCCI energies, shifted so the minima are at zero, for the
molybdenum dimer with cmin = 5 × 10−4 against bond length (Å)
using the STO-3G, LANL2DZ or Stuttgart RSC 1997 ECP basis all
with 12 non-frozen electrons.

The number of CSFs for the MCCI wavefunction is
plotted against the geometry of the system in Fig. 6. When
using STO-3G or the Stuttgart RSC 1997 ECP the curve
is fairly smooth and peaks a little after the equilibrium
bond length in line with the results from the other dimers
considered in this work. The LANL2DZ basis results are
less smooth but behave similarly until R = 4 Å where
the number of CSFs increases sharply. There does not
appear to be a problem with the energy results around this
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geometry though and the plot of the number of CSFs does
not illuminate the possibility of a curve crossing around
R = 2.2 Å. The multireference nature generally increased
with bond length for both bases although there is a very
small drop as dissociation is approached (inset of Fig. 6)
when using STO-3G.
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Figure 6: Number of CSFs at convergence for the MCCI wavefunc-
tion with cmin = 5 × 10−4 against bond length (Å) for the molyb-
denum dimer with the STO-3G, LANL2DZ or Stuttgart RSC 1997
ECP basis. Inset: A measure of multireference character versus bond
length (Å).

In the STO-3G results the 6 reference MOs are gener-
ally important but at the longest bond length only 5 are
found to be important. There are between 1 and 7 other
orbitals at the sampled bond lengths and overall we find
13 important orbitals. For the LANL2DZ results we esti-
mate there are 14 important orbitals. We see that the 6
reference MOs are classified as important across the curve.
The are 9 important MOs at the shortest bond length con-
sidered and this rises to 13 at R = 6.0 Å. The 6 reference
MOs appear to be important at all geometries when using
the Stuttgart RSC also. In this case there are 7 impor-
tant MOs at R = 1.5 Å while 12 are deemed important at
R = 6.0 Å.

4. Scandium nickel dimer

ScNi has historically proven to be a difficult species
to characterise both experimentally and computationally
in terms of both equilibrium bond length and dissocia-
tion energy. This species therefore would appear to be
a good candidate on which to test the efficacy of MCCI
for heteronuclear diatomic transition metals. The ground
state of this species is routinely accepted as 2Σ+ after
agreement between computational and experimental work
[39, 40, 41, 42, 43]. Experimentally, there are no data
for either dissociation energy or equilibrium bond length.
Ref. [42] does however provide details of vibrational levels
with ∆G1/2 = 334.5 ± 1.0 cm−1, which we use to ap-
proximate ωe, and indicates that a dissociation energy of
D0 > 1.36 eV is expected. An empirical model [41] was
used to predict D0 = 3.28 eV. CASSCF calculations [43]

found Re = 2.04 Å whilst MRCI+Q resulted in Re = 2.13
Å, De = 1.55 eV and ωe = 322 cm−1. Local-density-
functional-LCAO work [44] reported values of Re = 2.019
Å, De = 5.95 eV and ωe = 405.9 cm−1. The large value of
De is put down to the known problem of overestimation of
binding energies in the method. Density-functional theory
with the BPW91 approximation and 6-311+G* basis set
found [26] Re = 2.047 Å, De = 3.30 eV and ωe = 349
cm−1.

We calculate the doublet of A1 symmetry in C2v using
MCCI with cmin = 5 × 10−4 and cmin = 2 × 10−4 with a
convergence criterion of 10−3 Hartree. We fix the orbital
occupancy to ensure an overall wavefunction symmetry of
A1 and doublet spin. For the STO-3G basis set, we freeze
18 orbitals. A smooth HF potential energy curve is ob-
tained by allowing calculations at bond length 3.00 Å to
start from the previous result for 2.50 Å and by allowing
calculations at bond length 3.50 Å to start from the pre-
vious result for 4.00 Å. All other bond lengths required no
further manipulation. The HF energy at a bond length
of 2 Å was −2242.0030 Hartree. From the subsequent
MCCI curve, shown in Fig. 7, we report approximate re-
sults Re = 2.30 Å, D0 = 4.26 eV and ωe = 329 cm−1.
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Figure 7: MCCI energies for ScNi with cmin = 5× 10−4 and cmin =
2 × 10−4 against bond length (Å) using the STO-3G basis with 18
frozen orbitals.

We then move to cmin = 2 × 10−4 whilst retaining
the convergence criteria of 10−3 Hartree and obtain ap-
proximate results Re = 2.30 Å, D0 = 4.12 eV and ωe =
309 cm−1. The equilibrium bond lengths appear to be
slightly longer than value of 2.13 Å using MRCI+Q [43]
and the dissociation energy is somewhere in the middle
of the currently published calculations. Relatively good
agreement is found between the calculated and experimen-
tal values for ωe. However, the use of minimal basis sets
such as STO-3G means that conclusive statements cannot
be made.

The FCI space consists of around 108 SDs with MCCI
results using on average 7372 CSFs for cmin = 5 × 10−4

and 20102 CSFs for cmin = 2 × 10−4. The number of
CSFs for the MCCI wavefunction is plotted in Fig. 8. As
can be seen a general decline in the number of CSFs is
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found as the bond length increases from equilibrium with
a single spike at 3.00 Å in both cmin = 5 × 10−4 and
cmin = 2×10−4 cases. When looking at the multireference
nature, this coincides with a peak also at 3.00 Å as seen
in the inset of Fig. 8, but the two curves otherwise appear
not to be correlated. It should be noted that ScNi is highly
multireference in nature across the entire potential energy
surface. Attempts to use 3-21G, cc-pVDZ and cc-pVTZ
basis sets using accuracy as high as cmin = 2 × 10−4 with
convergence threshold 5× 10−4 Hartree were unsuccessful
in producing smooth MCCI curves and this is believed to
be partly due to HF convergency problems and the size
of the FCI space being 1013, 1017 and 1020 respectively
despite freezing 18 orbitals.
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Figure 8: Number of CSFs at convergence for the MCCI wavefunc-
tion with cmin = 5× 10−4 and cmin = 2× 10−4 against bond length
(Å) for ScNi with the STO-3G basis. Inset: A measure of multiref-
erence character versus bond length (Å).

Analysis of the important orbitals, at cmin = 2× 10−4,
indicated that the seven MOs occupied in the reference are
important at all bond lengths with between three and five
of the unoccupied MOs considered important. Overall we
find 14 important MOs.

5. Summary

We have used Monte Carlo configuration interaction
(MCCI) to calculate potential curves of four transition
metal dimers that present a computational challenge due
to their large FCI spaces and multireference character.

For Cr2 the MCCI potential curves were fairly similar
to the experimental result at the equilibrium and shorter
geometries, but seemed to increase too quickly as the bond
lengthened. The results when using cc-pVDZ agreed rea-
sonably well with experiment (Table 1). We note that the
cc-pVDZ results became closer to the experimental poten-
tial curve as cmin was lowered but the lower dissociation
energy agreed less well. However the dissociation energy
became too high when using a cc-pVTZ basis even when
compared with the cc-pVDZ results at the larger cutoff.
When using cc-pVTZ the dimer had the largest FCI space

and smallest fraction captured by MCCI when using a rea-
sonable cut-off (Table 2) and this could be responsible for
what seemed to be a much better description around the
equilibrium geometry than when approaching dissociation
of the strongly multireference wavefunction. This suggests
that approaches to reduce the size consistency error in
MCCI at reasonable cmin values may be worth investigat-
ing to improve the accuracy of dissociation energies when
the FCI space is very large.

Table 1: Summary of MCCI results at the smallest cmin considered
and experimental results.

Dimer Basis Re (Å) ωe (cm−1) D0 (eV )
Cr2 cc-pVDZ 1.70 490 1.22

cc-pVTZ 1.65 530 2.32
Exp 1.6788[15] 480.6[13] 1.53[16]

Sc2 cc-pVDZ 2.7 216 2.09
cc-pVTZ 2.7 222 2.02

Exp - 239.9[29] 1.12[28]
Mo2 STO-3G 1.9 467 6.40

LANL2DZ 2.1 253 1.73
Stuttgart 2.05 338 1.65

Exp 1.94[34] 447.1 [35] 4.474 [16]
ScNi STO-3G 2.3 309 4.12

Exp - 335 [42] > 1.36 [42]

In agreement with most other work, the MCCI results
for Sc2 gave the quintet as the ground state rather than
the triplet when using the cc-pVDZ or cc-pVTZ basis. The
spectroscopic values appeared stable on increasing the size
of the basis and were also in general agreement with other
computational work in that ωe agreed reasonably well with
experiment but D0 was too high.

Table 2: Approximate average size of the ground-state wavefunctions
at the lowest cmin considered.

Dimer Basis MCCI CSFs FCI SDs Fraction
Cr2 cc-pVDZ 1.2× 105 1015 10−10

cc-pVTZ 1.2× 105 1018 10−13

Sc2 cc-pVDZ 4.3× 104 4× 1010 10−6

cc-pVTZ 5.1× 104 3× 1012 10−8

Mo2 STO-3G 1.3× 104 4× 107 10−4

LANL2DZ 2.7× 104 1011 10−7

Stuttgart 2.7× 104 7× 1014 10−11

ScNi STO-3G 2× 104 108 10−4

Table 1 shows that the Mo2 modelled with an STO-
3G basis gives better results than when using LANL2DZ
or Stuttgart RSC to account for some of the relativistic
corrections via an effective core potential. However the
dissociation energy is too high when using a minimal ba-
sis. MCCI might be expected to give a fairly similar level
of accuracy to the Sc2 results based on the fraction of the
FCI space recovered for LANL2DZ (Table 2) although the
Mo2 wavefunctions are more strongly multireference. This
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could suggest that MCCI is capturing enough of the FCI
wavefunction but that the bases are not suitable for de-
scribing the potential curve of Mo2. With larger bases
though the fraction of the FCI space recovered may be a
problem as suggested for the chromium dimer.

Bases larger than STO-3G for ScNi appeared to be
outside the range of applicability of the method as smooth
potential curves could not be achieved. This was suggested
as a consequence of the large FCI space and HF conver-
gence problems of this strongly multireference nature het-
eronuclear diatomic. The minimal basis calculation gave
a similar vibrational frequency to experiment and was not
in disagreement with the predicted dissociation energy al-
though the latter was on the high side of previous compu-
tational work.

The multireference measure we introduced (MR) showed
that the MCCI wavefunction was strongly multireference
for all the dimers but with Sc2 a little less so than the oth-
ers. The multireference nature tended to increase with the
bond length, for all but ScNi, unlike the number of MCCI
configurations which would peak at an intermediate ge-
ometry with the exception of Mo2 with LANL2DZ. We
estimated the important molecular orbitals over a range
of geometries and found that the total ranged from 9 for
Sc2 to 15 for Cr2. This may hint at an appropriate size
of a fixed active space necessary for CAS calculations on
these systems and bases.

One current limitation of this method is that when the
potential curve is very shallow then the stochastic error
can mask the shape of the curve at reasonable cmin. We
observed this problem for Mn2 where the bonding has been
demonstrated [45] to be van der Waals with a dissociation
energy of around 0.05 eV. Hence the curve seems to be
insufficiently deep for this Monte Carlo approach to be
efficiently applied. For low enough cmin and sufficiently
long calculations then the MCCI results should be insen-
sitive to the HF orbitals for an all-electron computation.
However many orbitals need to be frozen and reasonable
values of cmin used in these systems for tractable calcula-
tions. Hence we found that the HF calculation can impact
the MCCI results and the occupancy of the HF determi-
nant may need to be fixed. Furthermore, previous MCCI
results may have to be used as a starting point for similar
geometries to achieve the lowest energy smooth curve by
increasing the chance that important configurations have
been found at all geometries when dealing with strongly
multireference systems with large FCI spaces. We have
demonstrated, however, that compact wavefunctions can
be found using MCCI to describe parts of the potential
energy curves of four transition metal dimers reasonably
well, and with qualitatively correct general features, with-
out the need for perturbative corrections or requiring in-
sight in the choice of orbitals for an active space. These
wavefunctions then offer the possibility of the calculation
of other properties and of perhaps constructing an active
space for CAS calculations via MCCI natural orbitals [46].
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Appendix

The numerical Hartree-Fock energies and MCCI
correlation energies at the lowest cmin considered
are provided in a supplementary data file.
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et al., Molpro, version 2012.1, a package of ab initio programs,
see http://www.molpro.net (2010).

[11] R. J. L. Roy, Level 8.0: A computer program for solving the
radial schrödinger equation for bound and quasibound levels,
see http://leroy.uwaterloo.ca/programs/.

[12] P. M. Morse, Phys. Rev. 34 (1929) 57.
[13] S. M. Casey, D. G. Leopold, J. Phys. Chem 97 (1993) 816.
[14] M. M. Goodgame, W. A. Goddard, Phys. Rev. Lett. 54 (1985)

661–664.
[15] V. E. Bondybey, J. H. English, Chem. Phys. Lett. 94 (1983)

443.
[16] B. Simard, M.-A. Lebeault-Dorget, A. Marijnissen, J. J. ter

Meulen, J. Chem. Phys. 108 (1998) 9668.
[17] B. O. Roos, Acc. Chem. Res. 32 (1999) 137.
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