We calculate potential curves for transition metal dimers using Monte Carlo
configuration interaction (MCCI). These results, and their associated
spectroscopic values, are compared with experimental and computational studies.
The multireference nature of the MCCI wavefunction is quantified and we
estimate the important orbitals. We initially consider the ground state of the
chromium dimer. Next we calculate potential curves for Sc2 where we
contrast the lowest triplet and quintet states. We look at the molybdenum dimer
where we compare non-relativistic results with the partial inclusion of
relativistic effects via effective core potentials, and report results for
scandium nickel.Comment: 9 pages and 8 figure