84 research outputs found

    Stellar Evolution with Enriched Surface Convection Zones I. General Effects of Planet Consumption

    Full text link
    Abundance analyses of stars with planets have revealed that their metallicities are enhanced relative to field stars. Such a trend was originally suggested to be due to accretion of iron-rich planetary material. Based on this assumption, we have developed a stellar evolution code to model stars with non-uniform metallicity distributions. We have calculated ``polluted'' stellar evolution tracks for stars with M=0.9-1.2 M_sun. Our models encompass a range of initial metal content from Z=0.01 to 0.03, and include metallicity enhancements within the stellar convection zone corresponding to Delta-Z=0.005-0.03. We find that the primary effects of metal enhancement on stellar structure and evolution are expansion of the convection zone and downward shift of effective temperature. In addition, we have computed the surface metallicities expected for stars of different mass for fixed quantities of pollution; there appears to be no correlation with present observational data on the metallicities of stars known to harbor planets.Comment: 29 pages, 10 figures, accepted for publication by the Astrophysical Journal; one reference correcte

    Explorations, Vol. 4, No. 1

    Get PDF
    Articles include: Cover: Old Yarmouth Light, 1960, Cape Forchu, Nova Scotia. By and from the collection of Edgar McKay. The Borderlands Concept: a new look at U.S.-Canada relations, by Victor Konrad and Lauren McKensey Fundy Tidal Power Project, by Gregory White Canadian Poet: Ken Norris Native American Life and Art: a celebration, November, 1986, by Lee-Ann Konrad The Montreal Canadiens: a cultural institution, by James J. Herlan U.S. and Canadian Executives: uses of formal and informal plans in top executive decision-making, by Kent Carter Our Cover Artist: bits and pieces of one man\u27s Nova Scotia, by Edgar McKay The Canadian-American Center and the Canadian Collection of the Fogler Library, by Alice Stewart Capitalist Development in the New England-Atlantic Provinces Region, by Robert H. Babcock Atlantic Canadian Members of Parliament as Representatives, by Howard Cody The Rower and the Pyramid: a tribute to Joe Walsh, by Edward D. Ives The Canadian-American Center: exercise in excellence, by Rand Erb Canadian and Maine Potatoes: a bushel of questions, by George K. Griner, Alan S. Kezis, and James D. Leiby After 20: the Future of the Canadian-American Center, by Victor Konra

    A warm Jupiter-sized planet transiting the pre-main sequence star V1298 Tau

    Get PDF
    We report the detection of V1298 Tau b, a warm Jupiter-sized planet (RPR_P = 0.91 ±\pm 0.05~ RJupR_\mathrm{Jup}, P=24.1P = 24.1 days) transiting a young solar analog with an estimated age of 23 million years. The star and its planet belong to Group 29, a young association in the foreground of the Taurus-Auriga star-forming region. While hot Jupiters have been previously reported around young stars, those planets are non-transiting and near-term atmospheric characterization is not feasible. The V1298 Tau system is a compelling target for follow-up study through transmission spectroscopy and Doppler tomography owing to the transit depth (0.5\%), host star brightness (KsK_s = 8.1 mag), and rapid stellar rotation (vsin⁥iv\sin{i} = 23 \kms). Although the planet is Jupiter-sized, its mass is presently unknown due to high-amplitude radial velocity jitter. Nevertheless, V1298 Tau b may help constrain formation scenarios for at least one class of close-in exoplanets, providing a window into the nascent evolution of planetary interiors and atmospheres.Comment: Accepted to A

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (ξAWHC), while some studies show the ability to substantially increase ξAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (ξFC) and permanent wilting point (ξPWP). New pedotransfer functions had predictions of ξAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on ξAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in ξAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in ξAWHC is about double previous estimates. Calcareous soils had an increase in ξAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    A warm Jupiter-sized planet transiting the pre-main sequence star V1298 Tau

    Get PDF
    We report the detection of V1298 Tau b, a warm Jupiter-sized planet (R_P = 0.91 ± 0.05 R_(Jup), P = 24.1 days) transiting a young solar analog with an estimated age of 23 Myr. The star and its planet belong to Group 29, a young association in the foreground of the Taurus–Auriga star-forming region. While hot Jupiters have been previously reported around young stars, those planets are non-transiting and near-term atmospheric characterization is not feasible. The V1298 Tau system is a compelling target for follow-up study through transmission spectroscopy and Doppler tomography owing to the transit depth (0.5%), host star brightness (K_s = 8.1 mag), and rapid stellar rotation (v sin i = 23 km s^(−1)). Although the planet is Jupiter-sized, its mass is currently unknown due to high-amplitude radial velocity jitter. Nevertheless, V1298 Tau b may help constrain formation scenarios for at least one class of close-in exoplanets, providing a window into the nascent evolution of planetary interiors and atmospheres

    Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations

    Get PDF
    Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed Type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing us to place interesting constraints on its progenitor system. Here we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3 ± 0.3 days and Δm 15(B) = 0.96 ± 0.03 mag, but it seems to have bluer B − V colors. We construct the "UVOIR" bolometric light curve having a peak luminosity of 1.49 × 1043 erg s−1, from which we derive a nickel mass as 0.55 ± 0.04 M ⊙ by fitting radiation diffusion models powered by centrally located 56Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a nondegenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia but is characterized by prominent and persistent carbon absorption features. The C ii features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in an SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers.Funding for the LJT has been provided by Chinese Academy of Sciences and the People’s Government of Yunnan Province. ZsB acknowledges the support provided by the National Research, Development and Innovation Fund of Hungary, financed under the PD_17 funding scheme, project No. PD123910. Support for JJH was provided by NASA through Hubble Fellowship grant #HST-HF2-51357.001-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, as well as NASA K2 Cycle 4 grant NNX17AE92G. Based on observations obtained at the South. Funding for the K2 mission is provided by the NASA Science Mission directorate. KEGS is supported in part by NASA K2 cycle 4 and 5 grants NNX17AI64G and 80NSSC18K0302, respectively. AR and his groups are supported in part by HST grants GO-12577 and HST AR-1285

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity
    • 

    corecore