259 research outputs found

    A reduced set of moves on one-vertex ribbon graphs coming from links

    Get PDF
    Every link in R^3 can be represented by a one-vertex ribbon graph. We prove a Markov type theorem on this subset of link diagrams.Comment: 14 pages, 15 figure

    A Reduced Set of Moves on One-Vertex Ribbon Graphs Coming from Links

    Get PDF
    Every link in R3 can be represented by a one-vertex ribbon graph. We prove a Markov type theorem on this subset of link diagrams

    Highly ordered tailored three-dimensional hierarchical nano/microporous gold–carbon architectures

    Get PDF
    The preparation and characterization of three-dimensional hierarchical architectures, consisting of monolithic nanoporous gold or silver films formed on highly ordered 3D microporous carbon supports, are described. The formation of these nano/microporous structures involves the electrodeposition or sputtering of metal alloys onto the lithographically patterned multi-layered microporous carbon, followed by preferential chemical dealloying of the less noble component. The resulting hierarchical structure displays a highly developed 3D interconnected network of micropores with a nanoporous metal coating. Tailoring the nanoporosity of the metal films and the diameter of the large micropores has been accomplished by systematically changing the alloy compositions via control of the deposition potential, plating solution and coarsening time. SEM imaging illustrates the formation of unique biomimetic nanocoral- or nanocauliflower-like self-supporting structures, depending on the specific preparation conditions. The new 3D hierarchical nano/microporous architectures allow for enhanced mass transport and catalytic activity compared to common nanoporous films prepared on planar substrates. The functionality of this new carbon–gold hierarchical structure is illustrated for the greatly enhanced performance of enzymatic biofuel cells where a substantially higher power output is observed compared to the bare microporous carbon substrate

    CSI 2264: Characterizing Accretion-Burst Dominated Light Curves for Young Stars in NGC 2264

    Full text link
    Based on more than four weeks of continuous high cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high quality, multi-wavelength light curves for young stellar objects (YSOs) whose optical variability is dominated by short duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief -- several hour to one day -- brightenings at optical and near-infrared (IR) wavelengths with amplitudes generally in the range 5-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a thirty day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u-g vs. g-r color-color diagram with the largest UV excesses. These stars also have large Halpha equivalent widths, and either centrally peaked, lumpy Halpha emission profiles or profiles with blue-shifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Amongst the stars with the largest UV excesses or largest Halpha equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.Comment: Accepted for publication in AJ. 39 pages; 6 tables; 25 figures, many of which are highly degraded to meet size limits. Please download the regular resolution version at http://web.ipac.caltech.edu/staff/amc/staufferetal2014.pd

    Genetic predisposition to metabolically unfavourable adiposity and prostate cancer risk:A Mendelian randomization analysis

    Get PDF
    BACKGROUND The associations of adiposity with aggressive prostate cancer risk are unclear. Using two-sample Mendelian randomization, we assessed the association of metabolically unfavourable adiposity (UFA), favourable adiposity (FA) and for comparison body mass index (BMI), with prostate cancer, including aggressive prostate cancer. METHODS We examined the association of these genetically predicted adiposity-related traits with risk of prostate cancer overall, aggressive and early onset disease using outcome summary statistics from the PRACTICAL consortium (including 15,167 aggressive cases). RESULTS In inverse-variance weighted models, there was little evidence that genetically predicted one standard deviation higher UFA, FA and BMI were associated with aggressive prostate cancer [OR: 0.85 (95% CI:0.61-1.19), 0.80 (0.53-1.23) and 0.97 (0.88-1.08), respectively]; these associations were largely consistent in sensitivity analyses accounting for horizontal pleiotropy. There was no strong evidence that genetically determined UFA, FA or BMI were associated with overall prostate cancer or early age of onset prostate cancer. CONCLUSIONS We did not find differences in the associations of UFA and FA with prostate cancer risk, which suggest that adiposity is unlikely to influence prostate cancer via the metabolic factors assessed; however, these did not cover some aspects related to metabolic health that may link obesity with aggressive prostate cancer, which should be explored in future studies

    The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database

    Full text link
    There is an urgent need for largeĂą scale botanical data to improve our understanding of community assembly, coexistence, biogeography, evolution, and many other fundamental biological processes. Understanding these processes is critical for predicting and handling humanĂą biodiversity interactions and global change dynamics such as food and energy security, ecosystem services, climate change, and species invasions.The Botanical Information and Ecology Network (BIEN) database comprises an unprecedented wealth of cleaned and standardised botanical data, containing roughly 81 million occurrence records from c. 375,000 species, c. 915,000 trait observations across 28 traits from c. 93,000 species, and coĂą occurrence records from 110,000 ecological plots globally, as well as 100,000 range maps and 100 replicated phylogenies (each containing 81,274 species) for New World species. Here, we describe an r package that provides easy access to these data.The bien r package allows users to access the multiple types of data in the BIEN database. Functions in this package query the BIEN database by turning user inputs into optimised PostgreSQL functions. Function names follow a convention designed to make it easy to understand what each function does. We have also developed a protocol for providing customised citations and herbarium acknowledgements for data downloaded through the bien r package.The development of the BIEN database represents a significant achievement in biological data integration, cleaning and standardization. Likewise, the bien r package represents an important tool for open science that makes the BIEN database freely and easily accessible to everyone.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142458/1/mee312861_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142458/2/mee312861.pd

    The Siren Site and the Long Transition from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau of Central Texas

    Get PDF
    On behalf of the Texas Department of Transportation (TxDOT), SWCA Environmental Consultants (SWCA) conducted testing and data recovery investigations at the Siren site (41WM1126), a prehistoric multi-component site in the Interstate Highway 35 right-of-way along the South Fork of the San Gabriel River in Williamson County, Texas. The work was done to fulfill TxDOT’s compliance obligations under the National Historic Preservation Act and the Antiquities Code of Texas. The testing investigations were conducted under Antiquities Permit 3834, and the subsequent data recovery was under Permit 3938. Kevin Miller served as Principal Investigator on both permits. Though the site extends far beyond the area of potential effects both horizontally and vertically, the investigations focused on Late Archaic and Late Prehistoric components within a relatively limited area that would be subject to project impacts. The investigations were conducted in February 2006. The investigations identified five isolable components that were intermittently laid down from approximately 2600 to 900 years ago. A substantial Late Prehistoric Austin phase occupation is represented by Scallorn projectile points, stone tools, burned rock, faunal materials, and radiocarbon dates from cooking features. The component feature assemblage includes a cluster of discrete, well-preserved burned rock features that range from small fire-cracked rock concentrations to a large, slab-lined feature that dominates the cluster. The underlying components include four cultural strata representing a series of phases in the final millennium or so of the long Archaic period. These components span approximately 2600 to 1500 b.p., though earlier, deeply buried components were also noted on the site. These deeper deposits were not the focus of the investigations, however, since they would not be affected by the project. The Archaic components revealed a suite of small side-notched dart points such as Ensor, Fairland, and Frio, as well as many earlier broad-bladed styles such as Castroville, Montell, Marshall, and Pedernales. These robust components contained numerous burned rock features of varying size and function, abundant tools, well-preserved faunal materials, macrobotanical remains including geophytes from several earth ovens, and a large suite of radiocarbon dates. The features include an incipient burned rock midden, burned rock clusters, a debitage reduction area, a biface cache, slab-lined hearths, basin-shaped hearths, and small circular hearths. The distributions of artifacts and features within the Archaic components across the excavation blocks showed significant variations. These differences reflect sequential components that provide a view of diachronic trends in technology, subsistence, economy, and a suite of other behaviors and activities during the long transition from Archaic to Late Prehistoric adaptations. As previously determined by the testing excavations and further substantiated by the data recovery investigations, the Siren site, most notably the Late Archaic and Late Prehistoric components, is eligible for the National Register of Historic Places under Criterion D, 36 CFR 60.4, and eligible for State Archeological Landmark designation under Criteria 1 and 2 of the Rules of Practice and Procedure for the Antiquities Code of Texas, 13 TAC 26.8. The excavations and subsequent analysis have mitigated the adverse effects of the bridge construction by recovering the vast majority of the affected components within the area of potential effect. No further archaeological work is recommended. Portions of the site outside the area of potential effects have not been fully evaluated, and any future impacts beyond the mitigated areas warrant further assessment

    Highly ordered tailored three-dimensional hierarchical nano/microporous gold–carbon architectures

    Get PDF
    The preparation and characterization of three-dimensional hierarchical architectures, consisting of monolithic nanoporous gold or silver films formed on highly ordered 3D microporous carbon supports, are described. The formation of these nano/microporous structures involves the electrodeposition or sputtering of metal alloys onto the lithographically patterned multi-layered microporous carbon, followed by preferential chemical dealloying of the less noble component. The resulting hierarchical structure displays a highly developed 3D interconnected network of micropores with a nanoporous metal coating. Tailoring the nanoporosity of the metal films and the diameter of the large micropores has been accomplished by systematically changing the alloy compositions via control of the deposition potential, plating solution and coarsening time. SEM imaging illustrates the formation of unique biomimetic nanocoral- or nanocauliflower-like self-supporting structures, depending on the specific preparation conditions. The new 3D hierarchical nano/microporous architectures allow for enhanced mass transport and catalytic activity compared to common nanoporous films prepared on planar substrates. The functionality of this new carbon–gold hierarchical structure is illustrated for the greatly enhanced performance of enzymatic biofuel cells where a substantially higher power output is observed compared to the bare microporous carbon substrate
    • 

    corecore