69 research outputs found

    The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP

    Get PDF
    This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealised experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven orbital seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate

    How Future Circulation Changes are modified by the Coupling of Atmosphere and Ocean Energy Transports.

    No full text
    International audienceA number of studies have shown how in isolation the atmospheric circulation would balance changes in the top-of-atmosphere energy budget or ocean energy transport, leading to climate impacts such as shifts of the ITCZ or mid-latitude jets. The atmosphere and ocean circulation, and so their respective meridional energy transports, are however tightly coupled through the surface wind forcing of the ocean. We use here the simplest setup for including the effects of the ocean circulation : an aqua-planet with the atmosphere coupled to a 2-layer slab ocean in which the Ekman currents and eddy diffusion can be parameterized. We first show how the interactive ocean strongly damps in the Tropics the atmospheric response to a prescribed inter-hemispheric heat transport. We then apply the same method for a doubling of CO2 : the response of the total meridional energy transport remains weak in the Tropics, but with strong compensation between the atmosphere and ocean components. As a result, the classic circulation response - weaker and broader Hadley cell, poleward jet shift, precipitation changes - is significantly modified

    Ekman heat transport for slab oceans

    No full text
    International audienceA series of schemes designed to include various representations of the Ekman-driven heat fluxes in slab-ocean models is introduced. They work by computing an Ekman mass flux, then deducing heat fluxes by the surface flow and an opposite deep return flow. The schemes differ by the computation of the return flow temperature: either diagnosed from the SST or given by an active second layer. Both schemes conserve energy, and use as few parameters as possible. Simulations in an aquaplanet setting show that the schemes reproduce well the structure of the meridional heat transport by the ocean. Compared to a diffusive slab-ocean, the simulated SST is more flat in the tropics, and presents a relative minimum at the equator, shifting the ITCZ into the summer hemisphere. In a realistic setting with continents, the slab model simulates correctly the mean state in many regions, especially in the tropics. The lack of other dynamical features, such as barotropic gyres, means that an optimal mean-state in regions such as the mid-latitudes will require additional flux corrections. © 2011 Springer-Verlag

    13. Reproduction du climat actuel

    No full text
    Aujourd’hui, on demande non seulement aux modĂšles de reproduire correctement la circulation gĂ©nĂ©rale moyenne de l’atmosphĂšre et de l’ocĂ©an mais aussi de simuler les caractĂ©ristiques principales des variations climatiques observĂ©es. C’est une condition nĂ©cessaire pour espĂ©rer effectuer des prĂ©visions de l’évolution du climat Ă  court terme et en rĂ©ponse Ă  une perturbation, cette rĂ©ponse ressemblant souvent Ă  la « variabilitĂ© naturelle ». De façon plus fondamentale, un modĂšle simulant une variab..

    Differing impacts of resolution changes in latitude and longitude on the midlatitudes in the LMDZ atmospheric GCM

    No full text
    International audienceThis article examines the sensitivity of the Laboratoire de Météorologie Dynamique Model with Zoom Capability (LMDZ), a gridpoint atmospheric GCM, to changes in the resolution in latitude and longitude, focusing on the midlatitudes. In a series of dynamical core experiments, increasing the resolution in latitude leads to a poleward shift of the jet, which also becomes less baroclinic, while the maximum eddy variance decreases. The distribution of the jet positions in time also becomes wider. On the contrary, when the resolution increases in longitude, the position and structure of the jet remain almost identical, except for a small equatorward shift tendency. An increase in eddy heat flux is compensated by a strengthening of the Ferrel cell. The source of these distinct behaviors is then explored in constrained experiments in which the zonal-mean zonal wind is constrained toward the same reference state while the resolution varies. While the low-level wave sources always increase with resolution in that case, there is also enhanced poleward propagation when increasing the resolution in longitude, preventing the jet shift. The diverse impacts on the midlatitude dynamics hold when using the full GCM in a realistic setting, either forced by observed SSTs or coupled to an ocean model. © 2011 American Meteorological Society

    Southern Hemisphere Jet Variability in the IPSL GCM at Varying Resolutions

    No full text
    International audienceFluctuations of the Southern Hemisphere eddy-driven jet are studied in a suite of experiments with the Laboratoire de Meteorologie Dynamique, version 4 (LMDZ4) atmospheric GCM with varying horizontal resolution, in coupled mode and with imposed SSTs. The focus is on the relationship between changes in the mean state brought by increasing resolution, and the intraseasonal variability and response to increasing CO2 concentration. In summer, the mean jet latitude moves poleward when the resolution increases in latitude, converging toward the observed one. Most measures of the jet dynamics, such as skewness of the distribution or persistence time scale of jet movements, exhibit a simple dependence on the mean jet latitude and also converge to the observed values. In winter, the improvement of the mean-state biases with resolution is more limited. In both seasons, the relationship between the dominant mode of variability-the southern annular mode (SAM)-and the mean state remains the same as in observations, except in the most biased winter simulation. The jet fluctuations-latitude shifts or splitting-just occur around a different mean position. Both the model biases and the response to increasing CO2 project strongly onto the SAM structure. No systematic relation between the amplitude of the response and characteristics of the control simulation was found, possibly due to changing dynamics or impacts of the physical parameterizations with different resolutions

    Influence of Mean State Changes on the Structure of ENSO in a Tropical Coupled GCM

    No full text
    International audienceThis study examines the response of the climate simulated by the Institut Pierre Simon Laplace tropical Pacific coupled general circulation model to two changes in parameterization: an improved coupling scheme at the coast, and the introduction of a saturation mixing ratio limiter in the water vapor advection scheme, which improves the rainfall distribution over and around orography. The main effect of these modifications is the suppression of spurious upwelling off the South American coast in Northern Hemisphere summer. Coupled feedbacks then extend this warming over the whole basin in an El Niño-like structure, with a maximum at the equator and in the eastern part of the basin. The mean precipitation pattern widens and moves equatorward as the trade winds weaken. This warmer mean state leads to a doubling of the standard deviation of interannual SST anomalies, and to a longer ENSO period. The structure of the ENSO cycle also shifts from westward propagation in the original simulation to a standing oscillation. The simulation of El Niño thus improves when compared to recent observed events. The study of ENSO spatial structure and lagged correlations shows that these changes of El Niño characteristics are caused by both the increase of amplitude and the modification of the spatial structure of the wind stress response to SST anomalies. These results show that both the mean state and variability of the tropical ocean can be very sensitive to biases or forcings, even geographically localized. They may also give some insight into the mechanisms responsible for the changes in ENSO characteristics due to decadal variability or climate change

    A Short-Term Negative Eddy Feedback on Midlatitude Jet Variability due to Planetary Wave Reflection

    No full text
    International audienceA three-level quasigeostrophic model on the sphere is used to identify the physical nature of the negative planetary wave feedback on midlatitude jet variability. A first approach consists of studying the nonlinear evolution of normal-mode disturbances in a baroclinic westerly zonal jet. For a low-zonal-wavenumber disturbance , successive acceleration and deceleration of the jet occur as a result of reflection of the wave on either side of the jet. The planetary wave deposits momentum in opposite ways during its poleward or equatorward propagation. In contrast, a high-zonal-wavenumber disturbance is not reflected but absorbed within the subtropical critical layer. It thus only induces poleward momentum fluxes, which accelerate the jet and shift it slightly poleward. A long-term simulation forced by a relaxation toward a zonally symmetric temperature profile is then analyzed. Planetary waves are shown to be baroclinically excited. When they propagate equatorward, they induce an acceleration of the jet together with a slight poleward shift. About two-thirds of the planetary waves are absorbed by the subtropical critical layer, which allows the accelerated poleward-shifted jet to persist for a while. For the remaining third, the potential vorticity equatorward of the jet is so well homogenized that a reflection occurs. It is followed by an abrupt jet deceleration during the subsequent poleward propagation. The reflection of planetary waves on the poleward side of the jet is more systematic because of the quasi-permanent presence of a turning latitude there. This negative planetary wave feedback is shown to act more on pulses of the jet than on its latitudinal shifts

    Impact of Anomalous Northward Oceanic Heat Transport on Global Climate in a Slab Ocean Setting

    No full text
    International audienceThis paper explores the impact of anomalous northward oceanic heat transport on global climate in a slab ocean setting. To that end, the GCM LMDZ5A of the Laboratoire de Météorologie Dynamique is coupled to a slab ocean, with realistic zonal asymmetries and seasonal cycle. Two simulations with different anomalous surface heating are imposed: 1) uniform heating over the North Atlantic basin and 2) concentrated heating inthe Gulf Stream region, with a compensating uniform cooling in the Southern Ocean in both cases. The magnitudes of the heating and of the implied northward interhemispheric heat transport are within the range of current natural variability. Both simulations show global effects that are particularly strong in the tropics, with a northward shift of the intertropical convergence zone (ITCZ) toward the heating anomalies. This shift is accompanied by a northward shift of the storm tracks in both hemispheres. From the comparison between the two simulations with different anomalous surface heating in the North Atlantic, it emerges that the global climate response is nearly insensitive to the spatial distribution of the heating. The cloud response acts as a large positive feedback on the oceanic forcing, mainly because of the low-cloud-induced shortwave anomalies in the extratropics. While previous literature has speculated that the extratropical Q flux may impact the tropics by the way of the transient eddy fluxes, it is explicitly demonstrated here. In the midlatitudes, the authors find a systema
    • 

    corecore