7 research outputs found

    Uma experiência de coleta seletiva em condomínios residenciais

    Get PDF
    Neste texto, relatamos uma experiência de coleta seletiva de resíduos e Educação Ambiental em condomínios residenciais do bairro Engenheiro Goulart, na zona Leste de São Paulo. Os idealizadores e executores do projeto foram alunos do segundo ano do curso de Gestão Ambiental da Escola de Artes, Ciências e Humanidades da USP (EACH-USP), contemplados com bolsas da Pró-Reitoria de Cultura e Extensão Universitária. O foco principal do projeto foi a abordagem técnica de coleta seletiva dentro de condomínios residenciais, com o objetivo de inserir o trabalho da cooperativa de reciclagem da região dentro da rotina dos condôminos. O grupo trabalhou com a sensibilização e a conscientização dos moradores a respeito da temática ambiental e social. A abordagem de cunho social foi de grande relevância, visto que o grande potencial de renda para a cooperativa era inexplorado devido a dificuldades de acesso. Esta intervenção favoreceu aos condôminos e trabalhadores da cooperativa uma nova maneira de olhar a região na qual habitam

    Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal \u3b2-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and \u3b2-catenin. A pharmacological activator of the WNT/\u3b2-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and \u3b2-catenin, and evidence for targeted activation of the WNT/\u3b2-catenin pathway as a potential treatment for this disease

    Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations

    Get PDF
    Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved

    Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal β-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and β-catenin. A pharmacological activator of the WNT/β-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and β-catenin, and evidence for targeted activation of the WNT/β-catenin pathway as a potential treatment for this disease
    corecore