9 research outputs found

    Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) 2 inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 17 January 2017The Early Jurassic was broadly a greenhouse climate period that was punctuated by short warm and cold climatic events, positive and negative excursions of carbon isotopes, and episodes of enhanced organic matter burial. Clay minerals from Pliensbachian sediments recovered from two boreholes in the Paris Basin, are used here as proxies of detrital supplies, runoff conditions, and palaeoceanographic changes. The combined use of these minerals with ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT stable isotope data (C-O) from bulk carbonates and organic matter allows palaeoclimatic reconstructions to be refined for the Pliensbachian. Kaolinite/illite ratio is discussed as a reliable proxy of the hydrological cycle and runoff from landmasses. Three periods of enhanced runoff are recognised within the Pliensbachian. The first one at the SinemurianPliensbachian transition shows a significant increase of kaolinite concomitant with the negative carbon isotope excursion at the so-called Sinemurian Pliensbachian Boundary Event (SPBE). The Early/Late Pliensbachian transition was also characterised by more humid conditions. This warm interval is associated with a major change in oceanic circulation during the Davoei Zone, likely triggered by sea-level rise; the newly created palaeogeography, notably the flooding of the London-Brabant Massif, allowed boreal detrital supplies, including kaolinite and chlorite, to be exported to the Paris Basin. The last event of enhanced runoff occurred during the late Pliensbachian (Subdonosus Subzone of the Margaritatus Zone), which occurred also during a warm period, favouring organic matter production and preservation. Our study highlights the major role of the London Brabant Massif in influencing oceanic circulation of the NW European area, as a topographic barrier (emerged lands) during periods of lowstand sea-level and its flooding during period of high sea-level. This massif was the unique source of smectite in the Paris Basin. Two episodes of smectite-rich sedimentation (‘smectite events’), coincide with regressive intervals, indicating emersion of the London Brabant Massif and thus suggesting that an amplitude of sea-level change high enough to be linked to glacio-eustasy. This mechanism is consistent with sedimentological and geochemical evidences of continental ice growth notably during the Latest Pliensbachian (Spinatum Zone), and possibly during the Early Pliensbachian (late Jamesoni/early Ibex Zones).The study was supported by the “Agence Nationale pour la Gestion des DĂ©chets Radioactifs” (Andra––French National Radioactive Waste Management Agency)

    Driftsonde observations to evaluate numerical weather prediction of the late 2006 African monsoon

    No full text
    International audienceDuring the international African Monsoon Multidisciplinary Analysis (AMMA) project, stratospheric balloons carrying gondolas called driftsondes capable of dropping meteorological sondes were deployed over West Africa and the tropical Atlantic Ocean. The goals of the deploymentwere to test the technology and to study the African easterly waves, which are often the forerunners of hurricanes. Between 29 August and 22 September 2006, 124 sondes were dropped over the seven easterly waves that moved across Africa into the Atlantic between about 10° and 20°N, where almost no in situ vertical information exists. Conditions included waves that developed into Tropical Storm Florence and Hurricanes Gordon and Helene. In this study, a selection of numerical weather prediction model outputs has been compared with the dropsondes to assess the effect of some developments in data assimilation on the quality of analyses and forecasts. By comparing two different versions of the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) model of Météo-France with the dropsondes, first the benefits of the last data assimilation updates are quantified. Then comparisons are carried out using the ARPEGE model and the Integrated Forecast System (IFS) model of the European Centre for Medium-Range Weather Forecasts. It is shown that the two models represent very well the vertical structure of temperature and humidity over both land and sea, and particularly within the Saharan air layer, which displays humidity below 5%-10%. Conversely, the models are less able to represent the vertical structure of the meridional wind. This problem seems to be common to ARPEGE and IFS, and its understanding still requires further investigations. © 2013 American Meteorological Society

    Stratéole 2: An Ultra Long Duration Super Pressure Balloon Campaign to Study the Equatorial Upper Troposphere and Lower Stratosphere

    No full text
    International audienceStratéole 2 is an international collaboration to deploy constellations of equator-orbiting super pressure balloons to probe the Tropical Tropopause Layer (TTL) and equatorial lower stratosphere. The project comprises three flight campaigns in early 2019, late 2020 and late 2023 in which constellations of 5, 20 and 20 balloons will be launched from the Seychelle islands (4°S). The super pressure balloon system and flight control gondola, 'Euros' has been developed by CNES as a follow to the highly successful Concordiasi campaign in the Antarctic and Pre-Concordiasi campaign at the equator. There are two balloon configurations: a stratospheric configuration with 13m diameter balloons that will fly near 20km and a TTL configuration with 11m diameter balloons that will fly near 18km at the upper edge of the TTL. Flight durations of over 3 months are planned with a flight domain circling the equator and spanning from 20°S to 15°N. Scientific instruments are carried on a modular science gondola, 'Zephyr', developed at LATMOS, which is configurable to support up to four instruments per gondola, with each instrument combination chosen to target specific science questions. A suite of 12 instrument has been developed by both US and French institutions specifically for this project and consist of in situ measurements of aerosols, water vapor, methane, ozone, pressure, winds and temperature profiles, and remotely sensed measurements of temperature profiles, longwave radiation and cloud and aerosol backscatter. The scientific goals of Stratéole 2 are wide reaching and include investigating the dynamics and thermal structure of the TTL, dehydration of air entering the stratosphere, chemical and aerosol transport near the TTL, multiscale equatorial waves and largescale circulations such as the Quasi Biennial Oscillation (QBO)

    An overview of the HIBISCUS campaign

    No full text
    International audienceThe EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans. Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s−1 at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics
    corecore