5,874 research outputs found

    The Trappers of Labrador

    Get PDF

    Suitability of litter amendments for the Australian chicken meat industry

    Get PDF
    This project focused on litter amendment products, which are used overseas during the rearing of meat chickens. Litter amendments are primarily used to manage ammonia volatilisation, especially when litter is reused, but also provide antimicrobial and environmental benefits, and increase the nutrient value of spent litter. This report summarises the outcomes of consultation with representatives and stakeholders of the Australian chicken meat industry, and summarises key findings from a literature review on litter amendments

    Increased expression of Lamin A/C correlates with regions of high wall-stress in abdominal aortic aneurysms.

    Get PDF
    Background: Since aortic diameter is the most significant risk factor for rupture, we sought to identify stress-dependent changes in gene expression to illuminate novel molecular processes in aneurysm rupture. Materials and Methods: We constructed finite element maps of abdominal computerized tomography scans (CTs) of seven abdominal aortic aneurysm (AAA) patients to map wall stress. Paired biopsies from high- and low-stress areas were collected at surgery using vascular landmarks as coordinates. Differential gene expression was evaluated by Illumina Array analysis, using the whole genome DNA-mediated, annealing, selection, extension, and ligation (DASL) gene chip (n = 3 paired samples). Results: The sole significant candidate from this analysis, Lamin A/C, was validated at the protein level, using western blotting. Lamin A/C expression in the inferior mesenteric vein (IMV) of AAA patients was compared to a control group and in aortic smooth muscle cells in culture in response to physiological pulsatile stretch. Areas of high wall stress (n = 7) correlate to those regions which have the thinnest walls [778 µm (585–1120 µm)] in comparison to areas of lowest wall stress [1620 µm (962–2919 µm)]. Induced expression of Lamin A/C correlated with areas of high wall stress from AAAs but was not significantly induced in the IMV from AAA patients compared to controls (n = 16). Stress-induced expression of Lamin A/C was mimicked by exposing aortic smooth muscle cells to prolonged pulsatile stretch. Conclusion: Lamin A/C protein is specifically increased in areas of high wall stress in AAA from patients, but is not increased on other vascular beds of aneurysm patients, suggesting that its elevation may be a compensatory response to the pathobiology leading to aneurysms

    The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3)

    Get PDF
    Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery. Biological significance: Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12 week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD

    A Study of Cosmic Ray Composition in the Knee Region using Multiple Muon Events in the Soudan 2 Detector

    Full text link
    Deep underground muon events recorded by the Soudan 2 detector, located at a depth of 2100 meters of water equivalent, have been used to infer the nuclear composition of cosmic rays in the "knee" region of the cosmic ray energy spectrum. The observed muon multiplicity distribution favors a composition model with a substantial proton content in the energy region 800,000 - 13,000,000 GeV/nucleus.Comment: 38 pages including 11 figures, Latex, submitted to Physical Review

    Developing & Testing Components For More Reliable Linear Reciprocating Compression Of Hydrogen

    Get PDF
    LectureSouthwest Research Institute® (SwRI®), ACI Services, Inc. (ACI), and Libertine FPE Limited collaborated to design and build a Linear Motor Reciprocating Compressor (LMRC) via a DOE-funded project with ACI cost share. The advanced compression system utilizes a novel concept of driving a permanent magnet piston assembly inside a hermetically sealed compressor cylinder through electromagnetic windings. The LMRC design minimizes the mechanical part count and has no process gas leakage to atmosphere. The LMRC has no “rod,� rod packing, crankshaft, coupling, or separate motor/driver. In addition, the LMRC is able to improve the efficiency of the compression process by eliminating bearing losses and optimizing the piston speed profile to reduce fluid dynamic losses. The primary project objective was to meet the DOE goal of increasing the compression efficiency and reducing the cost of forecourt hydrogen compression; however, most of the associated technology developments can be applied to high-pressure natural gas, process gas, air, and other compressors. High pressures, electromagnetic fields, and a hydrogen environment (for the specific DOE vehicle refueling application) are the main design obstacles that had to be overcome to design a linear motor reciprocating compressor that can ultimately achieve a 12,700-psi final discharge pressure in the third stage. Manufacturing of the first stage LMRC (first of three stages) was completed and tested in early-to-mid 2020. Solid model images and a photo of the LMRC that was built and tested is presented in Figure 1. The first stage LMRC has design suction and discharge pressures of 290 and 1,035 psi, respectively. After a failure caused the testing to end prematurely, SwRI internal research and development (IR&D) funding was sought to rebuild the LMRC using the lessons-learned from the 2020 testing to improve some of the key components of the design. The key components that were the focus of the IR&D project are as follows: • Metal Coatings – Specifically, coatings for magnets. A new coating and process method was developed to protect magnets from hydrogen incursion. • Valve Design – Based on the identified design improvements, a new valve design with minimal leakage for hydrogen service was developed and built. • Motion Profile – Motion profile optimization efforts were performed with the rebuilt LMRC. Testing of the above-noted components of the LMRC was completed in early-to-mid 2022; therefore, test data is included in this lecture. In addition to those component developments, further advances in the hermetic actuator platform technology are expected to yield efficiency and durability benefits for subsequent phases of development ahead of commercial product launch. The paper will include discussions of design, manufacturing, and testing aspects of some of the individual components and of the entire LMRC. In addition to being highly relevant to the hydrogen gas economy, the LMRC is considered relevant and applicable to most gas compression industries

    Opti-Owecs: Final Report Vol. 0: Executive Summary

    Get PDF
    It was the particular mission of the project 'Structural and Economic Optimisation of Bottom-Mounted Offshore Wind Energy Converters' (Opti-OWECS) to extend the state-of-the-art, to determine required methods and to demonstrate practical solutions which will significantly reduce the electricity cost. This will facilitate the exploitation of true offshore sites on a commercial base in a medium time scale of 5 to 10 years from now. In several fields, e.g. support structure design, installation of the offshore wind energy converters, operation and maintenance, dynamics of the entire offshore wind energy converter, structural reliability considerations, etc., the study demonstrated new propositions which will contribute significantly to a mature offshore wind energy technology. This was achieved due to a smooth cooperation of leading industrial engineers and researchers from the wind energy field, offshore technology and power management. Moreover, an innovative design methodology devoted particularly to offshore wind energy conversion systems (OWECS) was developed and successfully demonstrated. The so-called 'integrated OWECS design approach' considers the components of an offshore wind farm as parts of an entire system. Therefore interactions between sub-systems are considered in a complete and practical form as possible so that the design solution is governed by overall criteria such as: levelised production costs, adaptation to the actual site conditions, dynamics of the entire system, installation effort as well as OWECS availability. Furthermore, a novel OWECS cost model was developed which led among other work of the project to the identification of the main cost drivers, i.e. annual mean wind speed, distance from shore, operation and maintenance aspects including wind turbine reliability and availability. A link between these results and a database of the offshore wind energy potential in Europe, developed by the previous Joule project JOUR 0072, facilitated the first estimate of energy cost consistent over entire regions of Northern Europe. The European Commission has supported the project in the scope of the framework of the Non Nuclear Energy Programme JOULE Ill (Research and Technical Development) under grant JOR3-CT95-0087
    corecore