10,890 research outputs found

    Scheduling language and algorithm development study. Volume 2, phase 2: Introduction to plans programming

    Get PDF
    A user guide for the Programming Language for Allocation and Network Scheduling (PLANS) is presented. Information is included for the construction of PLANS programs. The basic philosophy of PLANS is discussed, and access and update reference techniques are described along with the use of tree structures

    Kepler-18b,c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements

    Get PDF
    We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M_☉, a radius of 1.1 R_☉, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M_⊕, a radius of 2.00 ± 0.10 R_⊕, and a mean density of 4.9 ± 2.4 g cm^3. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M_⊕, a radius of 5.49 ± 0.26 R_⊕, and a mean density of 0.59 ± 0.07 g cm^3, while Kepler-18d has a mass of 16.4 ± 1.4 M_⊕, a radius of 6.98 ± 0.33 R_⊕ and a mean density of 0.27 ± 0.03 g cm^3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs

    Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes

    Get PDF
    From millimeter and optical observations of the Jupiter-family comet 17P/Holmes performed soon after its huge outburst of October 24, 2007, we derive 14 N/15N = 139 +/- 26 in HCN, and 14N/15N = 165 +/- 40 in CN, establishing that HCN has the same non-terrestrial isotopic composition as CN. The same conclusion is obtained for the long-period comet C/1995 O1 (Hale-Bopp) after a reanalysis of previously published measurements. These results are compatible with HCN being the prime parent of CN in cometary atmospheres. The 15N excess relative to the Earth atmospheric value indicates that N-bearing volatiles in the solar nebula underwent important N isotopic fractionation at some stage of Solar System formation. HCN molecules never isotopically equilibrated with the main nitrogen reservoir in the solar nebula before being incorporated in Oort-cloud and Kuiper-belt comets. The 12C/13C ratios in HCN and CN are measured to be consistent with the terrestrial value.Comment: Accepted for publication in the Astrophysical Journal (Letters) 4 page

    The CN Isotopic Ratios In Comets

    Get PDF
    Our aim is to determine the isotopic ratios (12)C/(13)C and (14)N/(15)N in a variety of comets and link these measurements to the formation and evolution of the solar system. The (12)C/(13)C and (14)N/(15)N isotopic ratios are measured for the CN radical by means of high-resolution optical spectra of the R branch of the B-X (0, 0) violet band. 23 comets from different dynamical classes have been observed, sometimes at various heliocentric and nucleocentric distances, in order to estimate possible variations of the isotopic ratios in parent molecules. The (12)C/(13)C and (14)N/(15)N isotopic ratios in CN are remarkably constant (average values of, respectively, 91.0 +/- 3.6 and 147.8 +/- 5.7) within our measurement errors, for all comets whatever their origin or heliocentric distance. While the carbon isotopic ratio does agree with the terrestrial value (89), the nitrogen ratio is a factor of two lower than the terrestrial value (272), indicating a fractionation in the early solar system, or in the protosolar nebula, common to all the comets of our sample. This points towards a common origin of the comets independently of their birthplaces, and a relationship between HCN and CN.NSFAstronom

    Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    Get PDF
    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-lm-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers

    Observing Strategies for the Detection of Jupiter Analogs

    Get PDF
    To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage-rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show that no noise floor is reached, with a continuing improvement in detectability at the maximum number of observations N = 500 tested here.Peer reviewe

    Elemental Abundances of Solar Sibling Candidates

    Get PDF
    Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars' past orbits in a realistic Galactic potential reveals that one of them, HD162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. Measurements of rare-element abundances for this star further confirm its solar composition, with the only possible exception of Sm. Analysis of long-term high-precision radial velocity data rules out the presence of hot Jupiters and confirms that this star is not in a binary system. We find that chemical tagging does not necessarily benefit from studying as many elements as possible, but instead from identifying and carefully measuring the abundances of those elements which show large star-to-star scatter at a given metallicity. Future searches employing data products from ongoing massive astrometric and spectroscopic surveys can be optimized by acknowledging this fact.Comment: ApJ, in press. Tables 2 and 4 are available in full in the "Other formats: source" downloa

    Scheduling language and algorithm development study. Volume 3, phase 2: As-built specifications for the prototype language and module library

    Get PDF
    Detailed specifications of the prototype language and module library are presented. The user guide to the translator writing system is included
    corecore