12 research outputs found

    Exploring cosmic origins with CORE: Cosmological parameters

    Get PDF
    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA’s fifth call for mediumsized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as ∌ 107 as compared to Planck 2015, and 105 with respect to Planck 2015 + future BAO measurements

    An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    Get PDF
    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 degrees. recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7 sigma-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed

    Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory

    Get PDF
    We present a new method for probing the hadronic interaction models at ultrahigh energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air showers. Using the risetimes of the recorded signals, we define a new parameter, which we use to compare our observations with predictions from simulations. We find, first, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies. Second, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum Xmax for a sample of over 81,000 events extending from 0.3 to over 100 EeV. Above 30 EeV, the sample is nearly 14 times larger than what is currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of ?Xmaxcopyright is compared to simulations and interpreted in terms of the mean of the logarithmic mass. We find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition

    Exploring Cosmic Origins with CORE: Cluster Science

    Get PDF
    International audienceWe examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (>1014 M⊙) at redshift z>1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect 0~ 50 clusters at redshift z>1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4×1014 M⊙, for a 120 cm aperture telescope, and 1014 M⊙ for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky would be shallower than CORE and detect about 11,000 clusters, while a survey with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with the latter, CORE would reach a limiting mass of M500 ~ 2−3 × 1013 M⊙ and detect 220,000 clusters (5 sigma detection limit). Cosmological constraints from CORE cluster counts alone are competitive with other scheduled large scale structure surveys in the 2020's for measuring the dark energy equation-of-state parameters w0 and wa (σw0=0.28, σwa=0.31). In combination with primary CMB constraints, CORE cluster counts can further reduce these error bars on w0 and wa to 0.05 and 0.13 respectively, and constrain the sum of the neutrino masses, Σ mÎœ, to 39 meV (1 sigma). The wide frequency coverage of CORE, 60–600 GHz, will enable measurement of the relativistic thermal SZE by stacking clusters. Contamination by dust emission from the clusters, however, makes constraining the temperature of the intracluster medium difficult. The kinetic SZE pairwise momentum will be extracted with 0S/N=7 in the foreground-cleaned CMB map. Measurements of TCMB(z) using CORE clusters will establish competitive constraints on the evolution of the CMB temperature: (1+z)1−ÎČ, with an uncertainty of σÎČ  2.7× 10−3 at low redshift (z  1). The wide frequency coverage also enables clean extraction of a map of the diffuse SZE signal over the sky, substantially reducing contamination by foregrounds compared to the Planck SZE map extraction. Our analysis of the one-dimensional distribution of Compton-y values in the simulated map finds an order of magnitude improvement in constraints on σ8 over the Planck result, demonstrating the potential of this cosmological probe with CORE

    Exploring Cosmic Origins with CORE: Cluster Science

    Get PDF
    International audienceWe examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (>1014 M⊙) at redshift z>1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect 0~ 50 clusters at redshift z>1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4×1014 M⊙, for a 120 cm aperture telescope, and 1014 M⊙ for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky would be shallower than CORE and detect about 11,000 clusters, while a survey with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with the latter, CORE would reach a limiting mass of M500 ~ 2−3 × 1013 M⊙ and detect 220,000 clusters (5 sigma detection limit). Cosmological constraints from CORE cluster counts alone are competitive with other scheduled large scale structure surveys in the 2020's for measuring the dark energy equation-of-state parameters w0 and wa (σw0=0.28, σwa=0.31). In combination with primary CMB constraints, CORE cluster counts can further reduce these error bars on w0 and wa to 0.05 and 0.13 respectively, and constrain the sum of the neutrino masses, Σ mÎœ, to 39 meV (1 sigma). The wide frequency coverage of CORE, 60–600 GHz, will enable measurement of the relativistic thermal SZE by stacking clusters. Contamination by dust emission from the clusters, however, makes constraining the temperature of the intracluster medium difficult. The kinetic SZE pairwise momentum will be extracted with 0S/N=7 in the foreground-cleaned CMB map. Measurements of TCMB(z) using CORE clusters will establish competitive constraints on the evolution of the CMB temperature: (1+z)1−ÎČ, with an uncertainty of σÎČ  2.7× 10−3 at low redshift (z  1). The wide frequency coverage also enables clean extraction of a map of the diffuse SZE signal over the sky, substantially reducing contamination by foregrounds compared to the Planck SZE map extraction. Our analysis of the one-dimensional distribution of Compton-y values in the simulated map finds an order of magnitude improvement in constraints on σ8 over the Planck result, demonstrating the potential of this cosmological probe with CORE

    Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    No full text
    One of key scientific objectives of the Pierre Auger Observatory is the search for ultra-high energy photons. Such photons could originate either in the interactions of energetic cosmic-ray nuclei with the cosmic microwave background (so-called cosmogenic photons) or in the exotic scenarios, e.g. those assuming a production and decay of some hypothetical super-massive particles. The latter category of models would imply relatively large fluxes of photons with ultra-high energies at Earth, while the former, involving interactions of cosmic-ray nuclei with the microwave background - just the contrary: very small fractions. The investigations on the data collected so far in the Pierre Auger Observatory led to placing very stringent limits to ultra-high energy photon fluxes: below the predictions of the most of the exotic models and nearing the predicted fluxes of the cosmogenic photons. In this paper the status of these investigations and perspectives for further studies are summarized

    Spectral calibration of the fluorescence telescopes of the Pierre Auger Observatory

    No full text
    We present a novel method to measure precisely the relative spectral response of the fluorescence telescopes of the Pierre Auger Observatory. We used a portable light source based on a xenon flasher and a monochromator to measure the relative spectral efficiencies of eight telescopes in steps of 5 nm from 280 nm to 440 nm. Each point in a scan had approximately 2 nm FWHM out of the monochromator. Different sets of telescopes in the observatory have different optical components, and the eight telescopes measured represent two each of the four combinations of components represented in the observatory. We made an end-to-end measurement of the response from different combinations of optical components, and the monochromator setup allowed for more precise and complete measurements than our previous multi-wavelength calibrations. We find an overall uncertainty in the calibration of the spectral response of most of the telescopes of 1.5% for all wavelengths; the six oldest telescopes have larger overall uncertainties of about 2.2%. We also report changes in physics measurables due to the change in calibration, which are generally small

    Exploring cosmic origins with CORE: Cluster science

    No full text

    Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps

    No full text
    corecore