432 research outputs found

    Beach erosion and accretion at Virginia Beach

    Get PDF
    This report is published to provide coastal engineers with a description of beach erosion and accretion at Virginia Beach, Virginia, including the effect of continuing beach replenishment, and the apparent unimportance of land use in determining erosion. This report also provides bench-mark data on coastal processes at the shore north of the CERC Field Research Facility at Duck, North Carolina. The work was carried out under the beach evaluation program of the U.S. Army Coastal Engineering Research Center (CERC)

    Boulder deposition during major tsunami events

    Get PDF
    A remarkable accumulation of marine boulders located above the present spring tide level has occurred in two coastal lowlands of the Algarve (Portugal). The size-interval of the particles studied here is seldom reported in the literature in association with extreme events of coastal inundation, thus making this study of relevance to many other coasts worldwide. The spreads of boulders extend several hundred meters inland and well beyond the present landward limit of storm activity. The marine origin of the boulders is demonstrated by well-developed macro-bioerosion sculpturing and in situ skeletal remains of endolithic shallow marine bivalves. The good state preservation of the fossils within the boulders indicates that abrasion duringtransport and redeposition was not significant. We envisage boulder deposition as having taken place during the Lisbon tsunami of ad 1755 through the simultaneous landward entrainment of coarse particles from nearshore followed by rapid shoreward suspended-dominated transport and non-graded redeposition that excluded significant sorting by weight or boulder dimensions. We use numerical hydrodynamic modeling of tsunami (and storm) waves to test the observational data on boulder dimensions (density, size, distribution) on the most likely processes of sediment deposition. This work demonstrates the effectiveness of the study of boulder deposits in tsunami reconstruction. Copyright (C) 2011 John Wiley & Sons, Ltd

    Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    Get PDF
    © The Authors, 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Estuaries and Coasts 33 (2010): 15-29, doi:10.1007/s12237-009-9244-y.Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.This study was supported by the US Geological Survey’s Priority Ecosystems Science program, CALFED Bay/ Delta Program, and the University of California Center for Water Resources
    corecore