212 research outputs found

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age

    The maize root stem cell niche: a partnership between two sister cell populations

    Get PDF
    Using transcript profile analysis, we explored the nature of the stem cell niche in roots of maize (Zea mays). Toward assessing a role for specific genes in the establishment and maintenance of the niche, we perturbed the niche and simultaneously monitored the spatial expression patterns of genes hypothesized as essential. Our results allow us to quantify and localize gene activities to specific portions of the niche: to the quiescent center (QC) or the proximal meristem (PM), or to both. The data point to molecular, biochemical and physiological processes associated with the specification and maintenance of the niche, and include reduced expression of metabolism-, redox- and certain cell cycle-associated transcripts in the QC, enrichment of auxin-associated transcripts within the entire niche, controls for the state of differentiation of QC cells, a role for cytokinins specifically in the PM portion of the niche, processes (repair machinery) for maintaining DNA integrity and a role for gene silencing in niche stabilization. To provide additional support for the hypothesized roles of the above-mentioned and other transcripts in niche specification, we overexpressed, in Arabidopsis, homologs of representative genes (eight) identified as highly enriched or reduced in the maize root QC. We conclude that the coordinated changes in expression of auxin-, redox-, cell cycle- and metabolism-associated genes suggest the linkage of gene networks at the level of transcription, thereby providing additional insights into events likely associated with root stem cell niche establishment and maintenance

    The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor

    Get PDF
    Sodium/proton exchangers (NHX) are key players in the plant response to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in the tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in sodium ions being removed from the cytosol into the vacuole or extracellular space. The expression of most plant NHX genes is modulated by exposure of the organisms to salt stress or water stress. We explored the regulation of the vacuolar NHX1 gene from the salt-tolerant sugar beet plant (BvNHX1) using Arabidopsis plants transformed with an array of constructs of BvHNX1::GUS, and the expression patterns were characterized using histological and quantitative assays. The 5′ UTR of BvNHX1, including its intron, does not modulate the activity of the promoter. Serial deletions show that a 337 bp promoter fragment sufficed for driving activity that indistinguishable from that of the full-length (2,464 bp) promoter. Mutating four putative cis-acting elements within the 337 bp promoter fragment revealed that MYB transcription factor(s) are involved in the activation of the expression of BvNHX1 upon exposure to salt and water stresses. Gel mobility shift assay confirmed that the WT but not the mutated MYB binding site is bound by nuclear protein extracted from salt-stressed Betavulgaris leaves

    A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis

    Get PDF
    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general

    Ergocalciferol and Microcirculatory Function in Chronic Kidney Disease and Concomitant Vitamin D Deficiency: An Exploratory, Double Blind, Randomised Controlled Trial

    Get PDF
    Vitamin D deficiency and endothelial dysfunction are non-traditional risk factors for cardiovascular events in chronic kidney disease. Previous studies in chronic kidney disease have failed to demonstrate a beneficial effect of vitamin D on arterial stiffness, left ventricular mass and inflammation but none have assessed the effect of vitamin D on microcirculatory endothelial function.We conducted a randomised controlled trial of 38 patients with non diabetic chronic kidney disease stage 3-4 and concomitant vitamin D deficiency (<16 ng/dl) who received oral ergocalciferol (50,000 IU weekly for one month followed by 50,000 IU monthly) or placebo over 6 months. The primary outcome was change in microcirculatory function measured by laser Doppler flowmetry after iontophoresis of acetylcholine. Secondary endpoints were tissue advanced glycation end products, sublingual functional capillary density and flow index as well as macrovascular parameters. Parallel in vitro experiments were conducted to determine the effect of ergocalciferol on cultured human endothelial cells.Twenty patients received ergocalciferol and 18 patients received placebo. After 6 months, there was a significant improvement in the ergocalciferol group in both endothelium dependent microcirculatory vasodilatation after iontophoresis of acetylcholine (p = 0.03) and a reduction in tissue advanced glycation end products (p = 0.03). There were no changes in sublingual microcirculatory parameters. Pulse pressure (p = 0.01) but not aortic pulse wave velocity was reduced. There were no significant changes in bone mineral parameters, blood pressure or left ventricular mass index suggesting that ergocalciferol improved endothelial function independently of these parameters. In parallel experiments, expression of endothelial nitric oxide synthase and activity were increased in human endothelial cells in a dose dependent manner.Ergocalciferol improved microcirculatory endothelial function in patients with chronic kidney disease and concomitant vitamin D deficiency. This process may be mediated through enhanced expression and activity of endothelial nitric oxide synthase.Clinical trials.gov NCT00882401

    Sex-dimorphism in Cardiac Nutrigenomics: effect of Trans fat and/or Monosodium Glutamate consumption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A paucity of information on biological sex-specific differences in cardiac gene expression in response to diet has prompted this present nutrigenomics investigation.</p> <p>Sexual dimorphism exists in the physiological and transcriptional response to diet, particularly in response to high-fat feeding. Consumption of <it>Trans</it>-fatty acids (TFA) has been linked to substantially increased risk of heart disease, in which sexual dimorphism is apparent, with males suffering a higher disease rate. Impairment of the cardiovascular system has been noted in animals exposed to Monosodium Glutamate (MSG) during the neonatal period, and sexual dimorphism in the growth axis of MSG-treated animals has previously been noted. Processed foods may contain both TFA and MSG.</p> <p>Methods</p> <p>We examined physiological differences and changes in gene expression in response to TFA and/or MSG consumption compared to a control diet, in male and female C57BL/6J mice.</p> <p>Results</p> <p>Heart and % body weight increases were greater in TFA-fed mice, who also exhibited dyslipidemia (P < 0.05). Hearts from MSG-fed females weighed less than males (P < 0.05). 2-factor ANOVA indicated that the TFA diet induced over twice as many cardiac differentially expressed genes (DEGs) in males compared to females (P < 0.001); and 4 times as many male DEGs were downregulated including <it>Gata4</it>, <it>Mef2d </it>and <it>Srebf2</it>. Enrichment of functional Gene Ontology (GO) categories were related to transcription, phosphorylation and anatomic structure (P < 0.01). A number of genes were upregulated in males and downregulated in females, including pro-apoptotic histone deacetylase-2 (HDAC2). Sexual dimorphism was also observed in cardiac transcription from MSG-fed animals, with both sexes upregulating approximately 100 DEGs exhibiting sex-specific differences in GO categories. A comparison of cardiac gene expression between all diet combinations together identified a subset of 111 DEGs significant only in males, 64 DEGs significant in females only, and 74 transcripts identified as differentially expressed in response to dietary manipulation in both sexes.</p> <p>Conclusion</p> <p>Our model identified major changes in the cardiac transcriptional profile of TFA and/or MSG-fed mice compared to controls, which was reflected by significant differences in the physiological profile within the 4 diet groups. Identification of sexual dimorphism in cardiac transcription may provide the basis for sex-specific medicine in the future.</p

    FHY1 Mediates Nuclear Import of the Light-Activated Phytochrome A Photoreceptor

    Get PDF
    The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway

    Structure-Function Analysis of STRUBBELIG, an Arabidopsis Atypical Receptor-Like Kinase Involved in Tissue Morphogenesis

    Get PDF
    Tissue morphogenesis in plants requires the coordination of cellular behavior across clonally distinct histogenic layers. The underlying signaling mechanisms are presently being unraveled and are known to include the cell surface leucine-rich repeat receptor-like kinase STRUBBELIG in Arabidopsis. To understand better its mode of action an extensive structure-function analysis of STRUBBELIG was performed. The phenotypes of 20 EMS and T-DNA-induced strubbelig alleles were assessed and homology modeling was applied to rationalize their possible effects on STRUBBELIG protein structure. The analysis was complemented by phenotypic, cell biological, and pharmacological investigations of a strubbelig null allele carrying genomic rescue constructs encoding fusions between various mutated STRUBBELIG proteins and GFP. The results indicate that STRUBBELIG accepts quite some sequence variation, reveal the biological importance for the STRUBBELIG N-capping domain, and reinforce the notion that kinase activity is not essential for its function in vivo. Furthermore, individual protein domains of STRUBBELIG cannot be related to specific STRUBBELIG-dependent biological processes suggesting that process specificity is mediated by factors acting together with or downstream of STRUBBELIG. In addition, the evidence indicates that biogenesis of a functional STRUBBELIG receptor is subject to endoplasmic reticulum-mediated quality control, and that an MG132-sensitive process regulates its stability. Finally, STRUBBELIG and the receptor-like kinase gene ERECTA interact synergistically in the control of internode length. The data provide genetic and molecular insight into how STRUBBELIG regulates intercellular communication in tissue morphogenesis
    corecore