85 research outputs found

    Gestando responsablemente el porvenir

    Full text link
    Cloquell Ballester, VA. (2010). Gestando responsablemente el porvenir. Ecodiseño y Sostenibilidad. 2(1):5-6. http://hdl.handle.net/10251/108677S562

    Photovoltaic Electric Scooter Charger Dock for the Development of Sustainable Mobility in Urban Environments

    Full text link
    [EN] Means and modes of transport in urban environments are changing. The emergence of new means of personal transport, such as e-scooters or e-bikes, combined with new concepts such as `vehicle sharing' are changing urban transport. A greater social awareness of the harmful effects of polluting gases is leading to the adoption of new e-mobility solutions. A sustainable e-scooter recharging dock has been designed, built, and put into operation in a small town north of the city of Valencia (Spain). In the proposed novel solution, a stand-alone PV system is built for the free recharge of e-scooters using an original system that supports new sustainable means of transport. The design of the PV system considers the size limitations of the equipment, where a single PV module must generate the energy needed to recharge the e-scooters. A battery is used to store the energy and adjust power generation and consumption profiles. A commercial electronic converter adjusts the various electrical characteristics of generation, storage, and consumption. As a result of the system analysis, the surplus autonomy provided for the e-scooter recharging dock is calculated. Potential stakeholders in the use of the proposed system and their reasons for adopting this sustainable solution are identified. Experimental results of the first months of operation are included and these demonstrate the correct operation of the proposed system.Martinez-Navarro, A.; Cloquell Ballester, VA.; Segui-Chilet, S. (2020). Photovoltaic Electric Scooter Charger Dock for the Development of Sustainable Mobility in Urban Environments. IEEE Access. 8:169486-169495. https://doi.org/10.1109/ACCESS.2020.3023881S169486169495

    Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport's Cluster as Case Study

    Full text link
    [EN] Industrial symbiosis (IS) improves resource efficiency and creates sustainable opportunities by encouraging synergies between industries. However, managers still have difficulties in promoting IS, given the lack of appropriate managerial tools to efficiently obtain an overview of IS potential. In this paper, a procedure merging the Quick Wins Workshop format with clustering techniques is proposed, in order to both identify IS opportunities and support IS creation in the industrial cluster of Valenciaport. A total of 18 stakeholders took part in the study. As a result, 79 different resources classified into eight categories-materials (16), goods (14), space (11), expertise (11), energy (9), services (8), hydrocarbons (7), and water (3)-were derived and a total of 78 possible matchings were found. The creation of IS was supported by the clustering methods, which allow for the definition of common symbiotic features among stakeholders, classifying them into groups with similar IS potential. Three IS profiles were identified (high, medium, and low IS potential) and two strategic projects were devised, accordingly. It can be concluded that the proposed procedure provides useful managerial tools to identify resource flows, uncover patterns of exchange, identify possible matchings, and devise projects in communities interested in fostering IS from scratch.This research was funded by the Valencian Institute of Business Competitiveness (IVACE), grant number IMAMCA/2019/1.Artacho Ramírez, MÁ.; Pacheco-Blanco, B.; Cloquell Ballester, VA.; Vicent, M.; Celades, I. (2020). Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport's Cluster as Case Study. Sustainability. 12(18):1-21. https://doi.org/10.3390/su12187495S1211218Albino, V., Fraccascia, L., & Savino, T. (2015). Industrial Symbiosis for a Sustainable City: Technical, Economical and Organizational Issues. Procedia Engineering, 118, 950-957. doi:10.1016/j.proeng.2015.08.536Chertow, M. R. (2000). INDUSTRIAL SYMBIOSIS: Literature and Taxonomy. Annual Review of Energy and the Environment, 25(1), 313-337. doi:10.1146/annurev.energy.25.1.313Huang, M., Wang, Z., & Chen, T. (2019). Analysis on the theory and practice of industrial symbiosis based on bibliometrics and social network analysis. Journal of Cleaner Production, 213, 956-967. doi:10.1016/j.jclepro.2018.12.131Lee, D. (2012). Turning Waste into By-Product. Manufacturing & Service Operations Management, 14(1), 115-127. doi:10.1287/msom.1110.0352Yeo, Z., Masi, D., Low, J. S. C., Ng, Y. T., Tan, P. S., & Barnes, S. (2019). Tools for promoting industrial symbiosis: A systematic review. Journal of Industrial Ecology, 23(5), 1087-1108. doi:10.1111/jiec.12846Yuan, Z., & Shi, L. (2009). Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. Journal of Cleaner Production, 17(14), 1295-1302. doi:10.1016/j.jclepro.2009.03.016Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for Manufacturing. Scientific American, 261(3), 144-152. doi:10.1038/scientificamerican0989-144Wen, Z., & Meng, X. (2015). Quantitative assessment of industrial symbiosis for the promotion of circular economy: a case study of the printed circuit boards industry in China’s Suzhou New District. Journal of Cleaner Production, 90, 211-219. doi:10.1016/j.jclepro.2014.03.041Chertow, M. R. (2008). «Uncovering» Industrial Symbiosis. Journal of Industrial Ecology, 11(1), 11-30. doi:10.1162/jiec.2007.1110Ehrenfeld, J., & Gertler, N. (1997). Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. Journal of Industrial Ecology, 1(1), 67-79. doi:10.1162/jiec.1997.1.1.67Chertow, M. R. (1998). The Eco-industrial Park Model Reconsidered. Journal of Industrial Ecology, 2(3), 8-10. doi:10.1162/jiec.1998.2.3.8Baas, L. ., & Boons, F. . (2004). An industrial ecology project in practice: exploring the boundaries of decision-making levels in regional industrial systems. Journal of Cleaner Production, 12(8-10), 1073-1085. doi:10.1016/j.jclepro.2004.02.005Gibbs, D., & Deutz, P. (2005). Implementing industrial ecology? Planning for eco-industrial parks in the USA. Geoforum, 36(4), 452-464. doi:10.1016/j.geoforum.2004.07.009Korhonen, J., & Snäkin, J.-P. (2005). Analysing the evolution of industrial ecosystems: concepts and application. Ecological Economics, 52(2), 169-186. doi:10.1016/j.ecolecon.2004.07.016Tudor, T., Adam, E., & Bates, M. (2007). Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): A literature review. Ecological Economics, 61(2-3), 199-207. doi:10.1016/j.ecolecon.2006.10.010Velenturf, A. P. M. (2016). Promoting industrial symbiosis: empirical observations of low-carbon innovations in the Humber region, UK. Journal of Cleaner Production, 128, 116-130. doi:10.1016/j.jclepro.2015.06.027Chertow, M., & Ehrenfeld, J. (2012). Organizing Self-Organizing Systems. Journal of Industrial Ecology, 16(1), 13-27. doi:10.1111/j.1530-9290.2011.00450.xSymbiosis Institutehttp://www.symbiosis.dk/.fgdeLieder, M., & Rashid, A. (2016). Towards circular economy implementation: a comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115, 36-51. doi:10.1016/j.jclepro.2015.12.042Neves, A., Godina, R., Azevedo, S. G., & Matias, J. C. O. (2020). A comprehensive review of industrial symbiosis. Journal of Cleaner Production, 247, 119113. doi:10.1016/j.jclepro.2019.119113Domenech, T., Bleischwitz, R., Doranova, A., Panayotopoulos, D., & Roman, L. (2019). Mapping Industrial Symbiosis Development in Europe_ typologies of networks, characteristics, performance and contribution to the Circular Economy. Resources, Conservation and Recycling, 141, 76-98. doi:10.1016/j.resconrec.2018.09.016Cervo, H., Ferrasse, J.-H., Descales, B., & Van Eetvelde, G. (2020). Blueprint: A methodology facilitating data exchanges to enhance the detection of industrial symbiosis opportunities – application to a refinery. Chemical Engineering Science, 211, 115254. doi:10.1016/j.ces.2019.115254Kotowska, I. (2016). Policies Applied by Seaport Authorities to Create Sustainable Development in Port Cities. Transportation Research Procedia, 16, 236-243. doi:10.1016/j.trpro.2016.11.023Cerceau, J., Mat, N., Junqua, G., Lin, L., Laforest, V., & Gonzalez, C. (2014). Implementing industrial ecology in port cities: international overview of case studies and cross-case analysis. Journal of Cleaner Production, 74, 1-16. doi:10.1016/j.jclepro.2014.03.050Di Vaio, A., & Varriale, L. (2018). Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations. Sustainability, 10(3), 783. doi:10.3390/su10030783Gravagnuolo, A., Angrisano, M., & Fusco Girard, L. (2019). Circular Economy Strategies in Eight Historic Port Cities: Criteria and Indicators Towards a Circular City Assessment Framework. Sustainability, 11(13), 3512. doi:10.3390/su11133512Karimpour, R., Ballini, F., & Ölcer, A. I. (2019). Circular economy approach to facilitate the transition of the port cities into self-sustainable energy ports—a case study in Copenhagen-Malmö Port (CMP). WMU Journal of Maritime Affairs, 18(2), 225-247. doi:10.1007/s13437-019-00170-2Williams, J. (2019). The Circular Regeneration of a Seaport. Sustainability, 11(12), 3424. doi:10.3390/su11123424Review of Maritime Transport 2019. United Nations Conference on Trade and Development Websitehttps://unctad.org/en/PublicationsLibrary/rmt2019_en.pdfZhang, Q., Geerlings, H., El Makhloufi, A., & Chen, S. (2018). Who governs and what is governed in port governance: A review study. Transport Policy, 64, 51-60. doi:10.1016/j.tranpol.2018.01.019Acciaro, M., Ghiara, H., & Cusano, M. I. (2014). Energy management in seaports: A new role for port authorities. Energy Policy, 71, 4-12. doi:10.1016/j.enpol.2014.04.013Acciaro, M. (2015). Corporate responsibility and value creation in the port sector. International Journal of Logistics Research and Applications, 18(3), 291-311. doi:10.1080/13675567.2015.1027150Acciaro, M., Vanelslander, T., Sys, C., Ferrari, C., Roumboutsos, A., Giuliano, G., … Kapros, S. (2014). Environmental sustainability in seaports: a framework for successful innovation. Maritime Policy & Management, 41(5), 480-500. doi:10.1080/03088839.2014.932926Grant, G. B., Seager, T. P., Massard, G., & Nies, L. (2010). Information and Communication Technology for Industrial Symbiosis. Journal of Industrial Ecology, 14(5), 740-753. doi:10.1111/j.1530-9290.2010.00273.xThe Materials Marketplacehttp://materialsmarketplace.org/Online Waste Exchange for Businesses and Organizations in Singaporehttp://www.zerowastesg.com/Zero Waste Scotlandhttp://cme.resourceefficientscotland.com/materialsCecelja, F., Raafat, T., Trokanas, N., Innes, S., Smith, M., Yang, A., … Kokossis, A. (2015). e-Symbiosis: technology-enabled support for Industrial Symbiosis targeting Small and Medium Enterprises and innovation. Journal of Cleaner Production, 98, 336-352. doi:10.1016/j.jclepro.2014.08.051Low, J. S. C., Tjandra, T. B., Yunus, F., Chung, S. Y., Tan, D. Z. L., Raabe, B., … Herrmann, C. (2018). A Collaboration Platform for Enabling Industrial Symbiosis: Application of the Database Engine for Waste-to-Resource Matching. Procedia CIRP, 69, 849-854. doi:10.1016/j.procir.2017.11.075Kastner, C. A., Lau, R., & Kraft, M. (2015). Quantitative tools for cultivating symbiosis in industrial parks; a literature review. Applied Energy, 155, 599-612. doi:10.1016/j.apenergy.2015.05.037Evans, D. S., & Schmalensee, R. (2010). Failure to Launch: Critical Mass in Platform Businesses. Review of Network Economics, 9(4). doi:10.2202/1446-9022.1256Baas, L. (2000). Developing an Industrial Ecosystem in Rotterdam: Learning by … What? Journal of Industrial Ecology, 4(2), 4-6. doi:10.1162/108819800569753Park, H.-S., & Won, J.-Y. (2008). Ulsan Eco-industrial Park: Challenges and Opportunities. Journal of Industrial Ecology, 11(3), 11-13. doi:10.1162/jiec.2007.1346Boehme, S. E., Panero, M. A., Muñoz, G. R., Powers, C. W., & Valle, S. N. (2009). Collaborative Problem Solving Using an Industrial Ecology Approach. Journal of Industrial Ecology, 13(5), 811-829. doi:10.1111/j.1530-9290.2009.00166_2.xMat, N., Cerceau, J., Shi, L., Park, H.-S., Junqua, G., & Lopez-Ferber, M. (2016). Socio-ecological transitions toward low-carbon port cities: trends, changes and adaptation processes in Asia and Europe. Journal of Cleaner Production, 114, 362-375. doi:10.1016/j.jclepro.2015.04.058Schlüter, L., Mortensen, L., & Kørnøv, L. (2020). Industrial symbiosis emergence and network development through reproduction. Journal of Cleaner Production, 252, 119631. doi:10.1016/j.jclepro.2019.119631Mortensen, L., & Kørnøv, L. (2019). Critical factors for industrial symbiosis emergence process. Journal of Cleaner Production, 212, 56-69. doi:10.1016/j.jclepro.2018.11.222Lombardi, D. R., & Laybourn, P. (2012). Redefining Industrial Symbiosis. Journal of Industrial Ecology, 16(1), 28-37. doi:10.1111/j.1530-9290.2011.00444.xPunj, G., & Stewart, D. W. (1983). Cluster Analysis in Marketing Research: Review and Suggestions for Application. Journal of Marketing Research, 20(2), 134-148. doi:10.1177/002224378302000204Albino, V., Fraccascia, L., & Giannoccaro, I. (2016). Exploring the role of contracts to support the emergence of self-organized industrial symbiosis networks: an agent-based simulation study. Journal of Cleaner Production, 112, 4353-4366. doi:10.1016/j.jclepro.2015.06.070Chopra, S. S., & Khanna, V. (2014). Understanding resilience in industrial symbiosis networks: Insights from network analysis. Journal of Environmental Management, 141, 86-94. doi:10.1016/j.jenvman.2013.12.038Paquin, R. L., & Howard-Grenville, J. (2012). The Evolution of Facilitated Industrial Symbiosis. Journal of Industrial Ecology, 16(1), 83-93. doi:10.1111/j.1530-9290.2011.00437.xPaquin, R. L., & Howard-Grenville, J. (2013). Blind Dates and Arranged Marriages: Longitudinal Processes of Network Orchestration. Organization Studies, 34(11), 1623-1653. doi:10.1177/0170840612470230Jensen, P. D. (2016). The role of geospatial industrial diversity in the facilitation of regional industrial symbiosis. Resources, Conservation and Recycling, 107, 92-103. doi:10.1016/j.resconrec.2015.11.018Domenech, T., & Davies, M. (2011). Structure and morphology of industrial symbiosis networks: The case of Kalundborg. Procedia - Social and Behavioral Sciences, 10, 79-89. doi:10.1016/j.sbspro.2011.01.011Typologie Mondiale des Relations Ville-Port. Cybergeo 417http://cybergeo.revues.org/17332Van Klink, H. A. (1998). The Port Network as a New Stage in Port Development: The Case of Rotterdam. Environment and Planning A: Economy and Space, 30(1), 143-160. doi:10.1068/a300143De Langen, P. W. (2006). Chapter 20 Stakeholders, Conflicting Interests and Governance in Port Clusters. Research in Transportation Economics, 17, 457-477. doi:10.1016/s0739-8859(06)17020-1Boons, F. A. A., & Baas, L. W. (1997). Types of industrial ecology: The problem of coordination. Journal of Cleaner Production, 5(1-2), 79-86. doi:10.1016/s0959-6526(97)00007-3Mileva-Boshkoska, B., Rončević, B., & Uršič, E. (2018). Modeling and Evaluation of the Possibilities of Forming a Regional Industrial Symbiosis Networks. Social Sciences, 7(1), 13. doi:10.3390/socsci7010013Boletin Oficial del Estadohttps://www.boe.es/eli/es/rdlg/2011/09/05/2Cloquell-Ballester, V., Lo-Iacono-Ferreira, V. G., Artacho-Ramírez, M. Á., & Capuz-Rizo, S. F. (2020). RUE Index as a Tool to Improve the Energy Intensity of Container Terminals—Case Study at Port of Valencia. Energies, 13(10), 2556. doi:10.3390/en13102556Baas, L. W., & Huisingh, D. (2008). The synergistic role of embeddedness and capabilities in industrial symbiosis: illustration based upon 12 years of experiences in the Rotterdam Harbour and Industry Complex. Progress in Industrial Ecology, An International Journal, 5(5/6), 399. doi:10.1504/pie.2008.023408Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on Waste (Text with EEA Relevance)https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32018L0851Costa, I., Massard, G., & Agarwal, A. (2010). Waste management policies for industrial symbiosis development: case studies in European countries. Journal of Cleaner Production, 18(8), 815-822. doi:10.1016/j.jclepro.2009.12.019Jiao, W., & Boons, F. (2014). Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review. Journal of Cleaner Production, 67, 14-25. doi:10.1016/j.jclepro.2013.12.050Deutz, P., & Ioppolo, G. (2015). From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology. Sustainability, 7(2), 2259-2273. doi:10.3390/su7022259Fraccascia, L., Giannoccaro, I., & Albino, V. (2017). Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study. Sustainability, 9(4), 521. doi:10.3390/su9040521Lehtoranta, S., Nissinen, A., Mattila, T., & Melanen, M. (2011). Industrial symbiosis and the policy instruments of sustainable consumption and production. Journal of Cleaner Production. doi:10.1016/j.jclepro.2011.04.00

    RUE Index as a Tool to Improve the Energy Intensity of Container Terminals-Case Study at Port of Valencia

    Full text link
    [EN] A container terminal is a high energy demanding organization. Giving priority to the investments that have a better impact on the minimization of energy consumption is a prime concern of the management board of the Port Authority and container terminals. This study presents a tool for the classification of the processes that take place in the port. The Relevant Use of Energy (RUE) index is described and applied to a case study, the Port Authority of Valencia, which is the main port of the Mediterranean in container traffic. Three different functional units have been discussed for the assessment: Twenty-foot Equivalent Units (TEU), cargo handled, and several container ships that operate in the port. The implementation of specific projects following the recommendation of the RUE Index validated the tool and allowed a reduction of the energy intensity of 29.5%, and a 40% reduction of the cost of energy per TEU between 2008 and 2016. However, there is still room for improvement, and project lines are proposed for this matter. A partnership between the RUE Index and an energy management system ISO 50001 certified and ensures quality data giving confidence to the decision-making process of the management board.Special thanks to the Valencia Port Authority for their collaboration in the data collection process.Cloquell Ballester, VA.; Lo-Iacono-Ferreira, VG.; Artacho Ramírez, MÁ.; Capuz-Rizo, SF. (2020). RUE Index as a Tool to Improve the Energy Intensity of Container Terminals-Case Study at Port of Valencia. Energies. 13(10):1-19. https://doi.org/10.3390/en13102556S1191310Communication from The Commission to The European Parliament, The European Council, The Council, The European Economic and Social Committee, The Committee of the Regions and The European Investment Bank. A Clean Planet for all. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economyhttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0773&from=ENMartínez-Moya, J., Vazquez-Paja, B., & Gimenez Maldonado, J. A. (2019). Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia. Energy Policy, 131, 312-319. doi:10.1016/j.enpol.2019.04.044Acciaro, M. (2015). Corporate responsibility and value creation in the port sector. International Journal of Logistics Research and Applications, 18(3), 291-311. doi:10.1080/13675567.2015.1027150Port Environmental Review 2016. Insight on Port Environmental Performance and its Evolution over Time. ESPO, Brusselshttps://www.espo.be/media/news/ESPO_EcoPorts%20Port%20Environmental%20Review%202016.pdfKrackeler, T., Schipper, L., & Sezgen, O. (1998). Carbon dioxide emissions in OECD service sectors: the critical role of electricity use. Energy Policy, 26(15), 1137-1152. doi:10.1016/s0301-4215(98)00055-xMemoria Verificación Gases Efecto Invernadero. Puerto de Valencia; Valencia. Year 2016https://www.valenciaport.com/en/publicaciones/Cascajo, R., García, E., Quiles, E., Correcher, A., & Morant, F. (2019). Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia. Energies, 12(5), 787. doi:10.3390/en12050787Liao, C.-H., Tseng, P.-H., Cullinane, K., & Lu, C.-S. (2010). The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port. Energy Policy, 38(9), 5251-5257. doi:10.1016/j.enpol.2010.05.018Bergqvist, R., & Egels-Zandén, N. (2012). Green port dues — The case of hinterland transport. Research in Transportation Business & Management, 5, 85-91. doi:10.1016/j.rtbm.2012.10.002Lättilä, L., Henttu, V., & Hilmola, O.-P. (2013). Hinterland operations of sea ports do matter: Dry port usage effects on transportation costs and CO2 emissions. Transportation Research Part E: Logistics and Transportation Review, 55, 23-42. doi:10.1016/j.tre.2013.03.007Kontovas, C., & Psaraftis, H. N. (2011). Reduction of emissions along the maritime intermodal container chain: operational models and policies. Maritime Policy & Management, 38(4), 451-469. doi:10.1080/03088839.2011.588262Chang, C.-C., & Wang, C.-M. (2012). Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan. Transportation Research Part D: Transport and Environment, 17(3), 185-189. doi:10.1016/j.trd.2011.11.006Rigot-Muller, P., Lalwani, C., Mangan, J., Gregory, O., & Gibbs, D. (2013). Optimising end-to-end maritime supply chains: a carbon footprint perspective. The International Journal of Logistics Management, 24(3), 407-425. doi:10.1108/ijlm-01-2013-0002Gibbs, D., Rigot-Muller, P., Mangan, J., & Lalwani, C. (2014). The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy, 64, 337-348. doi:10.1016/j.enpol.2013.09.024Johnson, H., & Styhre, L. (2015). Increased energy efficiency in short sea shipping through decreased time in port. Transportation Research Part A: Policy and Practice, 71, 167-178. doi:10.1016/j.tra.2014.11.008Tichavska, M., & Tovar, B. (2015). Environmental cost and eco-efficiency from vessel emissions in Las Palmas Port. Transportation Research Part E: Logistics and Transportation Review, 83, 126-140. doi:10.1016/j.tre.2015.09.002Winnes, H., Styhre, L., & Fridell, E. (2015). Reducing GHG emissions from ships in port areas. Research in Transportation Business & Management, 17, 73-82. doi:10.1016/j.rtbm.2015.10.008Mamatok, Y., & Jin, C. (2016). An integrated framework for carbon footprinting at container seaports: the case study of a Chinese port. Maritime Policy & Management, 44(2), 208-226. doi:10.1080/03088839.2016.1262077Chang, Y.-T. (2013). Environmental efficiency of ports: a Data Envelopment Analysis approach. Maritime Policy & Management, 40(5), 467-478. doi:10.1080/03088839.2013.797119Papaefthimiou, S., Sitzimis, I., & Andriosopoulos, K. (2016). A methodological approach for environmental characterization of ports. Maritime Policy & Management, 44(1), 81-93. doi:10.1080/03088839.2016.1224943IMO (1972) Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. Adoption: 13 November 1972; Entry into force: 30 August 1975http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/Convention-on-the-Prevention-of-Marine-Pollution-by-Dumping-of-Wastes-and-Other-Matter.aspxDi Vaio, A., & Varriale, L. (2018). Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations. Sustainability, 10(3), 783. doi:10.3390/su10030783ESPO Environmental Report 2019 EcoPortsinSights 2019https://www.espo.be/media/Environmental%20Report-2019%20FINAL.pdfIgnaccolo, M., Inturri, G., & Le Pira, M. (2018). Framing Stakeholder Involvement in Sustainable Port Planning. Transactions on Maritime Science, 7(02), 136-142. doi:10.7225/toms.v07.n02.003Clima Port Projecthttps://www.programmemed.eu/en/the-projects/project-focus/climeport.htmlGreen Craneshttp://www.greencranes.eu/Sea Terminalshttp://www.seaterminals.eu/Boletin Oficial del Estadohttps://www.boe.es/eli/es/rdlg/2011/09/05/

    Statistical analysis of the long-term influence of covid-19 on waste generation - a case study of Castellón in Spain

    Full text link
    [EN] Existing research recognizes the COVID-19 impact on waste generation. However, the preliminary studies were made at an early pandemic stage, focused on the household waste fraction, and employed descriptive statistics that lacked statistical support. This study tries to fill this gap by providing a reliable statistical analysis setting inferential confidence in the waste generation differences found in Castellón. Repeated measures ANOVA were carried out for all the waste fractions collected and recorded in the city landfill database from 2017 to 2020. Additionally, Bonferroni¿s multiple comparison test (p < 0.05) was used to assure confidence level correction and identify which pairs of years¿ differences appeared. The longitudinal study identified trends for each waste fraction before the pandemic and showed how they changed with the advent of the crisis. Compared to 2019, waste collection in 2020 significantly grew for glass and packaging; remained unchanged for beaches, paper and cardboard, and dropped substantially for households, streets, markets, bulky waste, hospitals, and recycling centres. Total waste showed no differences between 2017 and 2019 but dropped significantly in 2020. These findings may help us better understand the long-term implications of COVID-19 and improve municipal solid waste management in a similar crisis.Artacho Ramírez, MÁ.; Moreno-Solaz, H.; Lo-Iacono-Ferreira, VG.; Cloquell Ballester, VA. (2022). Statistical analysis of the long-term influence of covid-19 on waste generation - a case study of Castellón in Spain. International Journal of Environmental research and Public Health (Online). 19(10):1-17. https://doi.org/10.3390/ijerph19106071117191

    The Carbon Footprint of Valencia Port: A Case Study of the Port Authority of Valencia (Spain)

    Full text link
    [EN] Maritime transport is responsible for 13% of the Greenhouse Gases (GHG) emissions of the transport sector. Port authorities, terminals, shipping companies, and other stakeholders have joined e orts to improve this sector¿s environmental performance. In Spain, the Ministry for Ecological Transition and Demographic Challenge has developed a methodology to assess the carbon footprint. This methodology has been adapted to ports and applied to processes under the Port Authority of Valencia¿s umbrella achieving scopes 1, 2, and 3. The results highlight that ship tra c, within the port, of containers and cruises (categorized in scope 3) had a major impact on the carbon footprint. Buildings lighting managed by the terminals has a significant e ect on scope 2. Diesel consumption shares with gasoline consumption the primary representation in scope 1. The carbon footprint between 2008 and 2016 was maintained, although tra c in the port increased by 24% during this period. The results show a decrease of 17% when emissions are compared using the base year¿s emissions factors to avoid external factors. Future projects that include self-consumption or renewable energy policies seem to be the next step in a port that shows good results but still has room for improvement in activities of scope 3.Authors want to thank the Valencia Port Authority for their collaboration in the data collection process. Special thanks to Federico Torres Monfort, Alicia Marti, Pilar Sanchez and Rafael Company for their support.Cloquell Ballester, VA.; Lo-Iacono-Ferreira, VG.; Artacho Ramírez, MÁ.; Capuz-Rizo, SF. (2020). The Carbon Footprint of Valencia Port: A Case Study of the Port Authority of Valencia (Spain). International Journal of Environmental research and Public Health (Online). 17(21):1-16. https://doi.org/10.3390/ijerph17218157S1161721Visor Cartográfic de la Generalitat http://visor.gva.es/visor/Eurostat https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.doEMAS Register https://webgate.ec.europa.eu/emas2/public/registration/listEnvironmental Statement 2018 https://www.valenciaport.com/wp-content/uploads/Memoria-Ambiental-2018ENG.pdfLi, Y., Wang, Y., He, Q., & Yang, Y. (2020). Calculation and Evaluation of Carbon Footprint in Mulberry Production: A Case of Haining in China. International Journal of Environmental Research and Public Health, 17(4), 1339. doi:10.3390/ijerph170413392019 Status Report. The Task Force on Climate-Related Financial Disclosures https://www.fsb-tcfd.org/publications/tcfd-2019-status-report/Jalkanen, J.-P., Johansson, L., & Kukkonen, J. (2016). A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmospheric Chemistry and Physics, 16(1), 71-84. doi:10.5194/acp-16-71-2016Carballo-Penela, A., Mateo-Mantecón, I., Doménech, J. L., & Coto-Millán, P. (2012). From the motorways of the sea to the green corridors’ carbon footprint: the case of a port in Spain. Journal of Environmental Planning and Management, 55(6), 765-782. doi:10.1080/09640568.2011.627422International Standard Organization ISO 14067:2018 Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification https://www.iso.org/standard/71206.htmlPAS 2050:2011: Specification for the Assessment of the Life Cycle Greenhouse Gas; Emissions of Goods and Services https://shop.bsigroup.com/upload/shop/download/pas/pas2050.pdfSchmalensee, R., Stoker, T. M., & Judson, R. A. (1998). World Carbon Dioxide Emissions: 1950–2050. Review of Economics and Statistics, 80(1), 15-27. doi:10.1162/003465398557294DORE, A., VIENO, M., TANG, Y., DRAGOSITS, U., DOSIO, A., WESTON, K., & SUTTON, M. (2007). Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmospheric Environment, 41(11), 2355-2367. doi:10.1016/j.atmosenv.2006.11.013Doudnikoff, M., & Lacoste, R. (2014). Effect of a speed reduction of containerships in response to higher energy costs in Sulphur Emission Control Areas. Transportation Research Part D: Transport and Environment, 27, 19-29. doi:10.1016/j.trd.2013.12.008(2011). Environmental Impacts of International Shipping. doi:10.1787/9789264097339-enHongisto, M. (2014). Impact of the emissions of international sea traffic on airborne deposition to the Baltic Sea and concentrations at the coastline⁎⁎The research has received funding from the European Regional Development Fund, Central Baltic INTERREG IV A programme within the SNOOP project. Oceanologia, 56(2), 349-372. doi:10.5697/oc.56-2.349Lee, P. T. ‐W., Hu, K., & Chen, T. (2010). External Costs of Domestic Container Transportation: Short‐Sea Shipping versus Trucking in Taiwan. Transport Reviews, 30(3), 315-335. doi:10.1080/01441640903010120Medda, F., & Trujillo, L. (2010). Short-sea shipping: an analysis of its determinants. Maritime Policy & Management, 37(3), 285-303. doi:10.1080/03088831003700678Carbon Emissions Study in the European Straits of the PASSAGE Project https://www.interregeurope.eu/fileadmin/user_upload/tx_tevprojects/library/file_1528203599.pdfCarbon Footprint of Container Terminal Port in Mumbai; International Conference on Impact of climate change on Food, Energy and Environment. Elsevier https://www.researchgate.net/publication/269702576_Carbon_Footprinting_of_Container_Terminal_Ports_in_MumbaiJurong Port. Carbon Footprint Report 2010 https://esi.nus.edu.sg/publications/esi-publications/publication/2015/12/18/jurong-port-carbon-footprint-report-2010Tool to Assess Global Warming at Port Facilities https://www.portoflosageneles.org/references/news_112911_calculatorCarbon Footprint a Key in Port Sustainability. CIP 2017. 14–15 https://issuu.com/revistacip3/docs/revista_cip_06_octubre_2017Mamatok, Y., Huang, Y., Jin, C., & Cheng, X. (2019). A System Dynamics Model for CO2 Mitigation Strategies at a Container Seaport. Sustainability, 11(10), 2806. doi:10.3390/su11102806Azarkamand, S., Wooldridge, C., & Darbra, R. M. (2020). Review of Initiatives and Methodologies to Reduce CO2 Emissions and Climate Change Effects in Ports. International Journal of Environmental Research and Public Health, 17(11), 3858. doi:10.3390/ijerph17113858Guía de Cálculo Guía Para el Cálculo y Gestión de la Huella de Carbono en Instalaciones Portuarias Por Niveles https://www.valenciaport.com/wp-content/uploads/guia-calculo-gestion-huella-carbono.pdfMemoria Verificación Gases Efecto Invernadero. Puerto de Valencia; Valencia. Year 2008–2016 https://www.valenciaport.com/en/publicaciones/Ministry for Ecological Transition and Demographic Challenge https://www.miteco.gob.es/en/ministerio/default.aspxhttps://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/instruccionescalculadorahc_tcm30-485627.pdfReal Decreto 163/2014, de 14 de Marzo, por el que se Crea el Registro de Huella de Carbono, Compensación y Proyectos de Absorción de Dióxido de Carbono https://www.boe.es/diario_boe/txt.php?id=BOE-A-2014-33792006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan: N. p., 2006 https://www.ipcc-nggip.iges.or.jp/public/2006gl/Cloquell-Ballester, V., Lo-Iacono-Ferreira, V. G., Artacho-Ramírez, M. Á., & Capuz-Rizo, S. F. (2020). RUE Index as a Tool to Improve the Energy Intensity of Container Terminals—Case Study at Port of Valencia. Energies, 13(10), 2556. doi:10.3390/en1310255

    Selección óptima basada en la predicción de corrosión atmosférica de sistemas de conducción de cables eléctricos con recubrimiento de zinc para instalaciones eléctricas

    Full text link
    [ES] Se presenta una metodología para la selección óptima del recubrimiento a base de zinc más adecuado en sistemas metálicos de canalización, para cumplir con aquellos requisitos de un proyecto industrial relacionados con la resistencia a la corrosión atmosférica. Las actuales metodologías están basadas en procedimientos de cálculo heurísticos, que no consideran la influencia de las condiciones atmosféricas in situ y que son la principal causa de la mayoría de los problemas de corrosión. El efecto de la corrosión a lo largo del tiempo, generalmente se estima utilizando una función logarítmica, que depende de la corrosión durante el primer año de exposición, así como de los parámetros ambientales (ejemplo: temperatura, humedad, contaminantes, etc.). Se han analizado diferentes modelos matemáticos para la predicción de la corrosión durante el primer año de exposición. Diez de estos modelos han sido seleccionados y comparados con ensayos reales, para finalmente seleccionar el modelo que mejor se ajusta a dichos valores reales. A partir de este valor de corrosión del primer año, se calcula la función de corrosión a largo plazo para cada revestimiento comercial relevante. Finalmente, se analiza un caso de estudio mediante la metodología propuesta. Los resultados muestran claramente la importancia de la función de corrosión y su influencia en la selección del recubrimiento que minimiza el costo.[EN] ¿The study presents a methodology for the optimum selection of the most suitable zinc-based coatings in metallic trunking systems to fulfill the requirements related to atmospheric corrosion resistance. The current methodologies are based on heuristic procedures that do not consider the influence of the in situ atmospheric conditions, which are the main cause of most of the corrosion problems. The effect of corrosion over time is generally estimated using a logarithmic function, which depends on corrosion during the first year of exposure, as well as on environmental parameters (e.g. temperature, humidity, pollutants, etc.). Different mathematical models for the prediction of corrosion during the first year of exposure were analyzed. Ten of these models were selected and compared with actual tests determining the model that best fitted the actual values. From this first-year corrosion value, the long-term corrosion function was calculated for each relevant commercial coating. Finally, a case study was analyzed by means of the proposed methodology. The results show the importance of the corrosion function and its influence in the selection of the coating to minimize costs.Chenoll-Mora, E.; Cloquell Ballester, VA.; Santamarina Siurana, MC. (2018). Optimum selection of zinc-coated cable trunking systems for electrical installations based on atmospheric corrosion prediction. NOVASINERGIA. 1(2):5-19. http://hdl.handle.net/10251/121760S5191

    Determination of potential locations for economic activities using complete location potential model in silver industry

    Full text link
    [EN] The complete- Potential Location Model (MPL-complete) is proposed. The model output is an image that represents the suitability of the land to accommodate economic activities. The model contemplates the use of techniques and tools for determining the location of economic activities by considering the variables: geographic area, location alternatives, location factors, type of economic activity, spatial scale and time scale analysis. The model was first time developed for the Baja California state in Mexico. To run this model was considered using a eographic Information System (GIS) and the multicriteria decision method AHP. Also present: an alternative consensus to work with Delphi method is proposed an indicator of influence factor depending on the distance to the economic activity of interest, and a management system that includes thematic layers in a unique way of coding.[ES] Se propone el Modelo de Potencial de Localización- completo (MPL-completo). El resultado del modelo es una imagen que representa la adecuación del territorio para albergar actividades económicas. El modelo contempla el uso de técnicas y herramientas para la determinación de la localización de actividades económicas considerando las variables: área geográfica, alternativas de localización, factores de localización, tipo de actividad económica, escala espacial del análisis y escala temporal. El modelo se desarrolla por primera vez para en el estado de Baja California en México. Para ejecutar dicho modelo se consideraron el uso de un Sistema de Información Geográfica (SIG) y el método de decisión multicriterio AHP. Adicionalmente se presentan: una alternativa de consenso al trabajar con Método Delphi y se propone un indicador de influencia factorial en función de la distancia a la actividad económica de interés, y un sistema de administración de capas temáticas que incluye una forma única de codificaciónMedina Palomera, A.; Cloquell Ballester, VA.; Santamarina Siurana, MC. (2010). Determinación del potencial de localización de actividades económicas mediante el MPL-Completo: caso de localización de platas industriales. Ecodiseño y Sostenibilidad. 2:29-49. http://hdl.handle.net/10251/110503S2949

    Drafting a composite indicator of validity for regulatory models and legal systems

    Get PDF
    The aim of this paper is to lay the groundwork for the creation of a composite indicator of the validity of regulatory systems. The composite nature of the indicator implies a) that its construction is embedded in the long-standing theoretical debate and framework of legal validity; b) that it formally contains other sub-indicators whose occurrence is essential to the determination of validity. The paper suggests, in other words, that validity is a second-degree property, i.e., one that occurs only once the justice, efficiency, effectiveness, and enforceability of the system have been checked

    Effect of traffic noise on perceived visual impact of motorway traffic

    Get PDF
    Visual impact is one of the major environmental impacts of motorways and requires adequate assessment. This study investigated the effect of traffic noise on the perceived visual impact of motorway traffic by comparing impact with sound to impact without sound. Computer visualisation and edited audio recordings were used to simulate different traffic and landscape scenarios, varying in four traffic conditions, two types of landscape, and three viewing distances. Subjective visual judgments on the simulated scenes with and without sound were obtained in a laboratory experiment. The results show that motorway traffic induced significant visual impact. In both sound conditions, increases in traffic volume led to higher visual impact and changes in traffic composition changed the impact significantly when traffic flow was low. Visual impact was significantly higher in the natural landscape and the increment was largely constant and independent from the effect of traffic condition in both sound conditions. The effect of viewing distance was also significant and there was a rapid-to-gentle decrease of visual impact by distance both with and without sound, but the decrease with sound was less rapid and the decrease pattern less clear. Overall, introduction of traffic noise increased the visual impact by a largely constant level which did not show clear dependence with noise level, traffic condition, landscape type, or viewing distance, although there was a possible effect of viewing distance on the increase. It suggests that the additional impact caused by traffic noise should be considered in visual impact assessment of motorway projects
    corecore