96 research outputs found

    Origin and Genetic Diversity of Pig Breeds

    Get PDF
    10 páginas, 5 figuras, 1 tabla.Genetic and archaeological findings suggest that pig domestication began about 9000–10 000 YBP at multiple sites across Eurasia, followed by their subsequent spread at a worldwide scale. Development of local types throughout the centuries led to the foundation, mostly during the nineteenth century, of current modern breeds with defined phenotypes and production abilities. Extensive intercrossing markedly increased the gene pool of these founder populations. For instance, it is well known that many European pig breeds carry Far Eastern haplotypes at high frequencies because of an ancient introgression with Chinese swine. Since then, artificial selection, genetic bottlenecks and inbreeding have significantly modified the allelic diversity of pig breeds. In the next future, state-of-the-art scientific advances as well as conservation programmes will be fundamental to preserve the genetic reservoir of pig breeds as well as to exploit it in the context of artificial selection schemes.Peer reviewe

    Characterization of the Impact of Density Gradient Centrifugation on the Profile of the Pig Sperm Transcriptome by RNA-Seq

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaRNA-Seq data from human semen suggests that the study of the sperm transcriptome requires the previous elimination from the ejaculates of somatic cells carrying a larger load of RNA. Semen purification is also carried to study the sperm transcriptome in other species including swine and it is often done by density gradient centrifugation to obtain viable spermatozoa from fresh ejaculates or artificial insemination doses, thereby limiting the throughput and remoteness of the samples that can be processed in one study. The aim of this work was to evaluate the impact of purification with density gradient centrifugation by BoviPure TM on porcine sperm. Four boar ejaculates were purified with BoviPure TM and their transcriptome sequenced by RNA-Seq was compared with the RNA-Seq profiles of their paired non-purified sample. Seven thousand five hundred and nineteen protein coding genes were identified. Correlation, cluster, and principal component analysis indicated high-although not complete-similarity between the purified and the paired non-purified ejaculates. 372 genes displayed differentially abundant RNA levels between treatments. Most of these genes had lower abundances after purification and were mostly related to translation, transcription and metabolic processes. We detected a significant change in the proportion of genes of epididymal origin within the differentially abundant genes (1.3%) when compared with the catalog of unaltered genes (0.2%). In contrast, the proportion of testis-specific genes was higher in the group of unaltered genes (4%) when compared to the list of differentially abundant genes (0%). No proportion differences were identified for prostate, white blood, lymph node, tonsil, duodenum, skeletal muscle, liver, and mammary gland. Altogether, these results suggest that the purification impacts on the RNA levels of a small number of genes which are most likely caused by the removal of epididymal epithelial cells but also premature germinal cells, immature or abnormal spermatozoa or seminal exosomes with a distinct load of RNAs

    Genomic, transcriptomic and epigenomic analysis towards the understanding of porcine semen quality traits. Past, current and future trends

    Get PDF
    The importance of boar reproductive traits, including semen quality, in the sustainability of pig production system is increasingly being acknowledged by academic and industrial sectors. Research is needed to understand the biology and genetic components underlying these traits so that they can be incorporated into selection schemes and managerial decisions. This article reviews our current understanding of genome biology and technologies for genome, transcriptome and epigenome analysis which now facilitate the identification of causal variants affecting phenotypes more than ever before. Genetic and transcriptomic analysis of candidate genes, Genome-Wide Association Studies, expression microarrays, RNA-Seq of coding and noncoding genes and epigenomic evaluations have been conducted to profile the molecular makeups of pig sperm. These studies have provided insightful information for a several semen-related parameters. Nonetheless, this research is still incipient. The spermatozoon harbors a reduced transcriptome and highly modified epigenome, and it is assumed to be transcriptionally silent for nuclear gene expression. For this reason, the extent to which the sperm’s RNA and epigenome recapitulate sperm biology and function is unclear. Hence, we anticipate that single-cell level analyses of the testicle and other male reproductive organs, which can reveal active transcription and epigenomic profiles in cells influencing sperm quality, will gain popularity and markedly advance our understanding of sperm-related traits. Future research will delve deeper into sperm fertility, boar resilience to environmental changes or harsh conditions, especially in the context of global warming, and also in transgenerational inheritance and how the environment influences the sperm transcriptome and epigenome

    A systems biology framework integrating GWAS and RNA-seq to shed light on the molecular basis of sperm quality in swine

    Get PDF
    Background Genetic pressure in animal breeding is sparking the interest of breeders for selecting elite boars with higher sperm quality to optimize ejaculate doses and fertility rates. However, the molecular basis of sperm quality is not yet fully understood. Our aim was to identify candidate genes, pathways and DNA variants associated to sperm quality in swine by analysing 25 sperm-related phenotypes and integrating genome-wide association studies (GWAS) and RNA-seq under a systems biology framework. Results By GWAS, we identified 12 quantitative trait loci (QTL) associated to the percentage of head and neck abnormalities, abnormal acrosomes and motile spermatozoa. Candidate genes included CHD2, KATNAL2, SLC14A2 and ABCA1. By RNA-seq, we identified a wide repertoire of mRNAs (e.g. PRM1, OAZ3, DNAJB8, TPPP2 and TNP1) and miRNAs (e.g. ssc-miR-30d, ssc-miR-34c, ssc-miR-30c-5p, ssc-miR-191, members of the let-7 family and ssc-miR-425-5p) with functions related to sperm biology. We detected 6128 significant correlations (P-value ≤ 0.05) between sperm traits and mRNA abundances. By expression (e)GWAS, we identified three trans-expression QTL involving the genes IQCJ, ACTR2 and HARS. Using the GWAS and RNA-seq data, we built a gene interaction network. We considered that the genes and interactions that were present in both the GWAS and RNA-seq networks had a higher probability of being actually involved in sperm quality and used them to build a robust gene interaction network. In addition, in the final network we included genes with RNA abundances correlated with more than four semen traits and miRNAs interacting with the genes on the network. The final network was enriched for genes involved in gamete generation and development, meiotic cell cycle, DNA repair or embryo implantation. Finally, we designed a panel of 73 SNPs based on the GWAS, eGWAS and final network data, that explains between 5% (for sperm cell concentration) and 36% (for percentage of neck abnormalities) of the phenotypic variance of the sperm traits. Conclusions By applying a systems biology approach, we identified genes that potentially affect sperm quality and constructed a SNP panel that explains a substantial part of the phenotypic variance for semen quality in our study and that should be tested in other swine populations to evaluate its relevance for the pig breeding sector.info:eu-repo/semantics/publishedVersio

    A pilot RNA-seq study in 40 pietrain ejaculates to characterize the porcine sperm microbiome

    Get PDF
    The microbiome plays a key role in homeostasis and health and it has been also linked to fertility and semen quality in several animal species including swine. Despite the more than likely importance of sperm bacteria on the boar's reproductive ability and the dissemination of pathogens and antimicrobial resistance genes, the high throughput characterization of the swine sperm microbiome remains scarce. We carried RNA-seq on 40 ejaculates each from a different Pietrain boar and found that a proportion of the sequencing reads did not map to the Sus scrofa genome. The current study aimed at using these reads not belonging to pig to carry a pilot study to profile the boar sperm bacterial population and its relation with 7 semen quality traits. We found that the boar sperm contains a broad population of bacteria. The most abundant phyla were Proteobacteria (39.1%), Firmicutes (27.5%), Actinobacteria (14.9%) and Bacteroidetes (5.7%). The predominant species contaminated sperm after ejaculation from soil, faeces and water sources (Bacillus megaterium, Brachybacterium faecium, Bacillus coagulans). Some potential pathogens were also found but at relatively low levels (Escherichia coli, Clostridioides difficile, Clostridium perfringens, Clostridium botulinum and Mycobacterium tuberculosis). We also identified 3 potential antibiotic resistant genes from E. coli against chloramphenicol, Neisseria meningitidis against spectinomycin and Staphylococcus aureus against linezolid. None of these genes were highly abundant. Finally, we classified the ejaculates into categories according to their bacterial features and semen quality parameters and identified two categories that significantly differed for 5 semen quality traits and 13 bacterial features including the genera Acinetobacter, Stenotrophomonas and Rhodobacter. Our results show that boar semen contains a bacterial community, including potential pathogens and putative antibiotic resistance genes, and that these bacteria may affect its reproductive performance.info:eu-repo/semantics/acceptedVersio

    Estimating the frequency of Asian cytochrome B haplotypes in standard European and local Spanish pig breeds

    Get PDF
    Mitochondrial DNA has been widely used to perform phylogenetic studies in different animal species. In pigs, genetic variability at the cytochrome B gene and the D-loop region has been used as a tool to dissect the genetic relationships between different breeds and populations. In this work, we analysed four SNP at the cytochrome B gene to infer the Asian (A1 and A2 haplotypes) or European (E1 and E2 haplotypes) origins of several European standard and local pig breeds. We found a mixture of Asian and European haplotypes in the Canarian Black pig (E1, A1 and A2), German Piétrain (E1, A1 and A2), Belgian Piétrain (E1, A1), Large White (E1 and A1) and Landrace (E1 and A1) breeds. In contrast, the Iberian (Guadyerbas, Ervideira, Caldeira, Campanario, Puebla and Torbiscal strains) and the Majorcan Black pig breeds only displayed the E1 haplotype. Our results show that the introgression of Chinese pig breeds affected most of the major European standard breeds, which harbour Asian haplotypes at diverse frequencies (15–56%). In contrast, isolated local Spanish breeds, such as the Iberian and Majorcan Black pig, only display European cytochrome B haplotypes, a feature that evidences that they were not crossed with other Chinese or European commercial populations. These findings illustrate how geographical confinement spared several local Spanish breeds from the extensive introgression event that took place during the 18th and 19th centuries in Europe

    A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes

    Get PDF
    Understanding the molecular basis of cell function and ultimate phenotypes is crucial for the development of biological markers. With this aim, several RNA-seq studies have been devoted to the characterization of the transcriptome of ejaculated spermatozoa in relation to sperm quality and fertility. Semen quality follows a seasonal pattern and decays in the summer months in several animal species. The aim of this study was to deeply profile the transcriptome of the boar sperm and to evaluate its seasonal changes. We sequenced the total and the short fractions of the sperm RNA from 10 Pietrain boars, 5 collected in summer and 5 five sampled in winter, and identified a complex and rich transcriptome with 4,436 coding genes of moderate to high abundance. Transcript fragmentation was high but less obvious in genes related to spermatogenesis, chromatin compaction and fertility. Short non-coding RNAs mostly included piwi-interacting RNAs, transfer RNAs and microRNAs. We also compared the transcriptome of the summer and the winter ejaculates and identified 34 coding genes and 7 microRNAs with a significantly distinct distribution. These genes were mostly related to oxidative stress, DNA damage and autophagy. This is the deepest characterization of the boar sperm transcriptome and the first study linking the transcriptome and the seasonal variability of semen quality in animals. The annotation described here can be used as a reference for the identification of markers of sperm quality in pigs

    Whole genome sequencing identifies allelic ratio distortion in sperm involving genes related to spermatogenesis in a swine model

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaTransmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher's exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher's test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis

    Canine Leishmaniasis progression is associated with vitamin D deficiency

    Get PDF
    The relationship between vitamin D deficiency and the risk of suffering from a plethora of health disorders, ranging from autoimmune processes to infectious diseases has been widely described. Nonetheless, the potential role of vitamin D in visceral leishmaniasis remains uncharacterized. In the Mediterranean basin, where the dog is leishmania's main peri-domestic reservoir, control measures against the canine disease have shown beneficial effects on the incidence of human leishmaniasis. In this study, we measured the vitamin D levels in serum samples from a cohort of 68 healthy and disease dogs from a highly endemic area and we have also studied the relationship of these levels with parasitological and immunological parameters. The sick dogs presented significantly lower (P<0.001) vitamin D levels (19.6ng/mL) than their non-infected (31.8ng/mL) and the asymptomatic counterparts (29.6ng/mL). In addition, vitamin D deficiency correlated with several parameters linked to leishmaniasis progression. However, there was no correlation between vitamin D levels and the Leishmania-specific cellular immune response. Moreover, both the leishmanin skin test and the IFN-γ levels displayed negative correlations with serological, parasitological and clinical signs. Further studies to determine the functional role of vitamin D on the progression and control of canine leishmaniasis are needed

    Identification of circular RNAs in porcine sperm and evaluation of their relation to sperm motility

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaCircular RNAs (circRNAs) are emerging as a novel class of noncoding RNAs which potential role as gene regulators is quickly gaining interest. circRNAs have been studied in different tissues and cell types across several animal species. However, a thorough characterization of the circRNAome in ejaculated sperm remains unexplored. In this study, we profiled the sperm circRNA catalogue using 40 porcine ejaculates. A complex population of 1,598 circRNAs was shared in at least 30 of the 40 samples. Generally speaking, the predicted circRNAs presented low abundances and were tissue-specific. Around 80% of the circRNAs identified in the boar sperm were reported as novel. Results from abundance correlation between circRNAs and miRNAs together with the prediction of microRNA (miRNA) target sites in circRNAs suggested that circRNAs may act as miRNA sponges. Moreover, we found significant correlations between the abundance of 148 exonic circRNAs and sperm motility parameters. Two of these correlations, involving ssc_circ_1458 and ssc_circ_1321, were confirmed by RT-qPCR using 36 additional samples with extreme and opposite sperm motility values. Our study provides a thorough characterization of circRNAs in sperm and suggests that circRNAs hold potential as noninvasive biomarkers for sperm quality and male fertility
    • …
    corecore