92 research outputs found

    Modeling multidimensional effects in the propagation of radiative shocks

    Get PDF
    Radiative shocks (also called supercritical shocks) are high Mach number shock waves that photoionize the medium ahead of the shock front and give rise to a radiative precursor. They are generated in the laboratory using high-energy or high-power lasers and are frequently present in a wide range of astronomical objects. Their modelisation in one dimension has been the subject of numerous studies, but generalization to three dimensions is not straightforward. We calculate analyticaly the absorption of radiation in a grey uniform cylinder and show how it decreases with χR\chi R, the product of the opacity χ\chi and of the cylinder radius RR. Simple formulas, whose validity range increases when χR\chi R diminishes, are derived for the radiation field on the axis of symmetry. Numerical calculations in three dimensions of the radiative energy density, flux and pressure created by a stationary shock wave show how the radiation decreases whith RR. Finally, the bidimensional structures of both the precursor and the radiation field are calculated with time-dependent radiation hydrodynamics numerical simulations and the influence of two-dimensional effects on the electron density, the temperature, the shock velocity and the shock geometry are exhibited. These simulations show how the radiative precursor shortens, cools and slows down when RR is decreased

    Formol et fixation : nouvelle donne, nouvelles approches…

    Get PDF
    Mise au point par les chercheurs du Muséum national d’Histoire naturelle à la station de Biologie marine de Concarneau, la technique décrite ici consiste à fixer des poissons au formaldéhyde sous hyperbarie. Élaboré avec pour souci principal une exposition la plus réduite possible du manipulateur aux vapeurs de formol, le champ d’application de ce nouveau procédé s’étend notamment à la sauvegarde, au conditionnement et au transport de certains spécimens des collections des muséums

    Correction to: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).

    Get PDF
    CORRECTION TO: J CARDIOVASC MAGN RESON (2017) 19: 75. DOI: 10.1186/S12968-017-0389-8: In the original publication of this article [1] the "Competing interests" section was incorrect. The original publication stated the following competing interests

    A GENERAL MODEL FOR SWITCHED DC-DC CONVERTERS INCLUDING FILTERS

    No full text

    Etude statistique et cinematique des sursauts radio solaires de type trois

    No full text
    CNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    Development and setting of T1 quantitative measure in cardiac MRI

    No full text
    La cartographie du temps de relaxation longitudinale T1 est une technique d'IRM quantitative pour caractériser les tissus myocardiques. Plusieurs études ont déjà montré la corrélation entre la mesure de T1 et la présence de fibrose. Celle-ci est souvent observée dans les pathologies cardiaques telles que les cardiomyopathies ou l'infarctus du myocarde. Cependant, l'acquisition d'une carte T1 du coeur reste techniquement difficile. Actuellement, la quantification T1 du myocarde humain est réalisée en apnée à l'aide de séquences 2D qui sont spécifiques aux constructeurs et donc peu disponibles. Afin de pallier aux limitations de ces séquences, nous proposons une méthode basée sur une séquence 3D clinique. Cette technique, utilisant la variation des angles de bascule avec intégration d'une correction B1, a été adaptée pour une utilisation en imagerie cardiaque. Des essais sur fantôme ont permis de sélectionner les paramètres optimaux et de montrer la reproductibilité de la méthode. Puis, une étude sur volontaires sains a permis de valider la méthode en double synchronisation (cardiaque et respiratoire). Enfin, une méthode de reconstruction intégrant des signaux physiologiques de mouvement a également été utilisée afin de faire de la quantification T1 en respiration libre et de diminuer le temps d'acquisition. Les valeurs de T1 myocardique sur volontaires sont comprises entre 1289 ± 66 ms et 1376 ± 43 ms, correspondant aux valeurs de la littérature. Ces travaux ouvrent la voie à l'utilisation de la cartographie T1 chez les patients avec pour objectifs une meilleure caractérisation des pathologies et une meilleure adaptation des stratégies thérapeutiquesT1 mapping is a useful quantitative MR technique for cardiac tissue characterization. Several studies have shown that T1 measurements are correlated with fibrosis, which is observed in cardiac diseases such as cardiomyopathy or myocardial infarction. However, cardiac T1 mapping remains challenging, mainly because of long acquisition times and interference from cardiac and respiratory motions. T1 quantification on the human myocardium is generally performed on breath-hold with 2D specific sequences. Unfortunately these sequences are scanner specific and poorly available for clinical use. To overcome these limitations, we propose a new method based on a 3D clinical sequence. This technique, using a variable flip angle approach that integrates B1 correction, was adapted in cardiac imaging. Phantom tests were used to select the optimal parameters and to show the method reproducibility. Then, the method was validated with a volunteer study using double synchronization (cardiac and respiratory). Moreover, a reconstruction method integrating physiological signals of motion was also used to perform T1 quantification in free breathing and to reduce the total acquisition time. The myocardial T1 values on volunteers ranged between 1289 ± 66 ms and 1376 ± 43 ms, which was in good agreement with previously published works. These studies allow the use of T1 mapping in patients with better characterization of pathologies and a better adaptation to therapeutic strategie

    Mise en place d'une mesure quantitative du T1 en IRM cardiaque

    No full text
    T1 mapping is a useful quantitative MR technique for cardiac tissue characterization. Several studies have shown that T1 measurements are correlated with fibrosis, which is observed in cardiac diseases such as cardiomyopathy or myocardial infarction. However, cardiac T1 mapping remains challenging, mainly because of long acquisition times and interference from cardiac and respiratory motions. T1 quantification on the human myocardium is generally performed on breath-hold with 2D specific sequences. Unfortunately these sequences are scanner specific and poorly available for clinical use. To overcome these limitations, we propose a new method based on a 3D clinical sequence. This technique, using a variable flip angle approach that integrates B1 correction, was adapted in cardiac imaging. Phantom tests were used to select the optimal parameters and to show the method reproducibility. Then, the method was validated with a volunteer study using double synchronization (cardiac and respiratory). Moreover, a reconstruction method integrating physiological signals of motion was also used to perform T1 quantification in free breathing and to reduce the total acquisition time. The myocardial T1 values on volunteers ranged between 1289 ± 66 ms and 1376 ± 43 ms, which was in good agreement with previously published works. These studies allow the use of T1 mapping in patients with better characterization of pathologies and a better adaptation to therapeutic strategiesLa cartographie du temps de relaxation longitudinale T1 est une technique d'IRM quantitative pour caractériser les tissus myocardiques. Plusieurs études ont déjà montré la corrélation entre la mesure de T1 et la présence de fibrose. Celle-ci est souvent observée dans les pathologies cardiaques telles que les cardiomyopathies ou l'infarctus du myocarde. Cependant, l'acquisition d'une carte T1 du coeur reste techniquement difficile. Actuellement, la quantification T1 du myocarde humain est réalisée en apnée à l'aide de séquences 2D qui sont spécifiques aux constructeurs et donc peu disponibles. Afin de pallier aux limitations de ces séquences, nous proposons une méthode basée sur une séquence 3D clinique. Cette technique, utilisant la variation des angles de bascule avec intégration d'une correction B1, a été adaptée pour une utilisation en imagerie cardiaque. Des essais sur fantôme ont permis de sélectionner les paramètres optimaux et de montrer la reproductibilité de la méthode. Puis, une étude sur volontaires sains a permis de valider la méthode en double synchronisation (cardiaque et respiratoire). Enfin, une méthode de reconstruction intégrant des signaux physiologiques de mouvement a également été utilisée afin de faire de la quantification T1 en respiration libre et de diminuer le temps d'acquisition. Les valeurs de T1 myocardique sur volontaires sont comprises entre 1289 ± 66 ms et 1376 ± 43 ms, correspondant aux valeurs de la littérature. Ces travaux ouvrent la voie à l'utilisation de la cartographie T1 chez les patients avec pour objectifs une meilleure caractérisation des pathologies et une meilleure adaptation des stratégies thérapeutique
    corecore