189 research outputs found

    Advancing the Transition to a High Performance Rural Health System

    Get PDF
    There are growing concerns about the current and future state of rural health. Despite decades of policy efforts to stabilize rural health systems through a range of policies and loan and grant programs, accelerating rural hospital closures combined with rapid changes in private and public payment strategies have created widespread concern that these solutions are inadequate for addressing current rural health challenges. The rural health system of today is the product of legacy policies and programs that often do not “fit” current local needs. Misaligned incentives undermine high-value and efficient care delivery. While there are limitations related to scalability in rural health system development, rural communities do have enormous potential to achieve the objectives of a high performance rural health system. This brief (and a companion paper at http://www.rupri.org/areas-of-work/health-policy/) discusses strategies and options for creating a pathway to a transformed, high performing rural health system

    Pursuing High Performance in Rural Health Care

    Get PDF
    Rural Futures Lab Foundation Papers are intended to present current thinking on the economic drivers and opportunities that will shape the future of rural America. They provide the foundation upon which it will be possible to answer the question that drives the Lab’s work—What has to happen today in order to achieve positive rural outcomes tomorrow

    HIV Treatment as Prevention: Debate and Commentary-Will Early Infection Compromise Treatment-as-Prevention Strategies?

    Get PDF
    Universal HIV testing and immediate antiretroviral therapy for infected individuals has been proposed as a way of reducing the transmission of HIV and thereby bringing the HIV epidemic under control. It is unclear whether transmission during early HIV infection—before individuals are likely to have been diagnosed with HIV and started on antiretroviral therapy—will compromise the effectiveness of treatment as prevention. This article presents two opposing viewpoints by Powers, Miller, and Cohen, and Williams and Dye, followed by a commentary by Fraser

    Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    Get PDF
    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics

    Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes

    Get PDF
    BACKGROUND: Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile

    De novo domestication of wild tomato using genome editing

    Get PDF
    Breeding of crops over millennia for yield and productivity1 has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost2. We devised a CRISPR–Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants

    Assessing the Potential Impacts to Riparian Ecosystems Resulting from Hemlock Mortality in Great Smoky Mountains National Park

    Get PDF
    Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality

    Incorporating concepts of inequality and inequity into health benefits analysis

    Get PDF
    BACKGROUND: Although environmental policy decisions are often based in part on both risk assessment information and environmental justice concerns, formalized approaches for addressing inequality or inequity when estimating the health benefits of pollution control have been lacking. Inequality indicators that fulfill basic axioms and agree with relevant definitions and concepts in health benefits analysis and environmental justice analysis can allow for quantitative examination of efficiency-equality tradeoffs in pollution control policies. METHODS: To develop appropriate inequality indicators for health benefits analysis, we provide relevant definitions from the fields of risk assessment and environmental justice and consider the implications. We evaluate axioms proposed in past studies of inequality indicators and develop additional axioms relevant to this context. We survey the literature on previous applications of inequality indicators and evaluate five candidate indicators in reference to our proposed axioms. We present an illustrative pollution control example to determine whether our selected indicators provide interpretable information. RESULTS AND CONCLUSIONS: We conclude that an inequality indicator for health benefits analysis should not decrease when risk is transferred from a low-risk to high-risk person, and that it should decrease when risk is transferred from a high-risk to low-risk person (Pigou-Dalton transfer principle), and that it should be able to have total inequality divided into its constituent parts (subgroup decomposability). We additionally propose that an ideal indicator should avoid value judgments about the relative importance of transfers at different percentiles of the risk distribution, incorporate health risk with evidence about differential susceptibility, include baseline distributions of risk, use appropriate geographic resolution and scope, and consider multiple competing policy alternatives. Given these criteria, we select the Atkinson index as the single indicator most appropriate for health benefits analysis, with other indicators useful for sensitivity analysis. Our illustrative pollution control example demonstrates how these indices can help a policy maker determine control strategies that are dominated from an efficiency and equality standpoint, those that are dominated for some but not all societal viewpoints on inequality averseness, and those that are on the optimal efficiency-equality frontier, allowing for more informed pollution control policies
    • 

    corecore