100 research outputs found

    Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective

    Get PDF
    Abstract Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    Noise Pollution Filters Bird Communities Based on Vocal Frequency

    Get PDF
    BACKGROUND: Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. METHODOLOGY/PRINCIPAL FINDINGS: Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as to which species traits influence tolerance of these novel acoustics

    Assessing the Potential Impacts to Riparian Ecosystems Resulting from Hemlock Mortality in Great Smoky Mountains National Park

    Get PDF
    Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality

    Efficient RT-QuIC seeding activity for \u3b1-synuclein in olfactory mucosa samples of patients with Parkinson's disease and multiple system atrophy

    Get PDF
    Background: Parkinson's disease (PD) is a neurodegenerative disorder whose diagnosis is often challenging because symptoms may overlap with neurodegenerative parkinsonisms. PD is characterized by intraneuronal accumulation of abnormal \u3b1-synuclein in brainstem while neurodegenerative parkinsonisms might be associated with accumulation of either \u3b1-synuclein, as in the case of Multiple System Atrophy (MSA) or tau, as in the case of Corticobasal Degeneration (CBD) and Progressive Supranuclear Palsy (PSP), in other disease-specific brain regions. Definite diagnosis of all these diseases can be formulated only neuropathologically by detection and localization of \u3b1-synuclein or tau aggregates in the brain. Compelling evidence suggests that trace-amount of these proteins can appear in peripheral tissues, including receptor neurons of the olfactory mucosa (OM). Methods: We have set and standardized the experimental conditions to extend the ultrasensitive Real Time Quaking Induced Conversion (RT-QuIC) assay for OM analysis. In particular, by using human recombinant \u3b1-synuclein as substrate of reaction, we have assessed the ability of OM collected from patients with clinical diagnoses of PD and MSA to induce \u3b1-synuclein aggregation, and compared their seeding ability to that of OM samples collected from patients with clinical diagnoses of CBD and PSP. Results: Our results showed that a significant percentage of MSA and PD samples induced \u3b1-synuclein aggregation with high efficiency, but also few samples of patients with the clinical diagnosis of CBD and PSP caused the same effect. Notably, the final RT-QuIC aggregates obtained from MSA and PD samples owned peculiar biochemical and morphological features potentially enabling their discrimination. Conclusions: Our study provide the proof-of-concept that olfactory mucosa samples collected from patients with PD and MSA possess important seeding activities for \u3b1-synuclein. Additional studies are required for (i) estimating sensitivity and specificity of the technique and for (ii) evaluating its application for the diagnosis of PD and neurodegenerative parkinsonisms. RT-QuIC analyses of OM and cerebrospinal fluid (CSF) can be combined with the aim of increasing the overall diagnostic accuracy of these diseases, especially in the early stages

    Cardiac fibrosis in aging mice

    Get PDF
    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.The authors thank Jesse Hammer and Josiah Raddar for technical assistance. Research reported in this publication was supported by the Ellison Medical Foundation, Parker B. Francis Foundation, and the National Institutes of Health (R01AR055225 and K01AR064766). Mouse colonies were supported by the National Institutes of Health under Award Number AG025707 for the Jackson Aging Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The Jackson Laboratory Shared Scientific Services were supported in part by a Basic Cancer Center Core Grant from the National Cancer Institute (CA34196).This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00335-016-9634-

    A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia

    Get PDF
    Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5×10−8). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15×10−4). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities

    Implementation outcome instruments for use in physical healthcare settings: a systematic review

    Get PDF
    BACKGROUND: Implementation research aims to facilitate the timely and routine implementation and sustainment of evidence-based interventions and services. A glaring gap in this endeavour is the capability of researchers, healthcare practitioners and managers to quantitatively evaluate implementation efforts using psychometrically sound instruments. To encourage and support the use of precise and accurate implementation outcome measures, this systematic review aimed to identify and appraise studies that assess the measurement properties of quantitative implementation outcome instruments used in physical healthcare settings. METHOD: The following data sources were searched from inception to March 2019, with no language restrictions: MEDLINE, EMBASE, PsycINFO, HMIC, CINAHL and the Cochrane library. Studies that evaluated the measurement properties of implementation outcome instruments in physical healthcare settings were eligible for inclusion. Proctor et al.'s taxonomy of implementation outcomes was used to guide the inclusion of implementation outcomes: acceptability, appropriateness, feasibility, adoption, penetration, implementation cost and sustainability. Methodological quality of the included studies was assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Psychometric quality of the included instruments was assessed using the Contemporary Psychometrics checklist (ConPsy). Usability was determined by number of items per instrument. RESULTS: Fifty-eight publications reporting on the measurement properties of 55 implementation outcome instruments (65 scales) were identified. The majority of instruments assessed acceptability (n = 33), followed by appropriateness (n = 7), adoption (n = 4), feasibility (n = 4), penetration (n = 4) and sustainability (n = 3) of evidence-based practice. The methodological quality of individual scales was low, with few studies rated as 'excellent' for reliability (6/62) and validity (7/63), and both studies that assessed responsiveness rated as 'poor' (2/2). The psychometric quality of the scales was also low, with 12/65 scales scoring 7 or more out of 22, indicating greater psychometric strength. Six scales (6/65) rated as 'excellent' for usability. CONCLUSION: Investigators assessing implementation outcomes quantitatively should select instruments based on their methodological and psychometric quality to promote consistent and comparable implementation evaluations. Rather than developing ad hoc instruments, we encourage further psychometric testing of instruments with promising methodological and psychometric evidence. SYSTEMATIC REVIEW REGISTRATION: PROSPERO 2017 CRD42017065348

    Food Use and Health Effects of Soybean and Sunflower Oils

    Get PDF
    This review provides a scientific assessment of current knowledge of health effects of soybean oil (SBO) and sunflower oil (SFO). SBO and SFO both contain high levels of polyunsaturated fatty acids (PUFA) (60.8 and 69%, respectively), with a PUFA:saturated fat ratio of 4.0 for SBO and 6.4 for SFO. SFO contains 69% C18:2n-6 and less than 0.1% C18:3n-3, while SBO contains 54% C18:2n-6 and 7.2% C18:3n-3. Thus, SFO and SBO each provide adequate amounts of C18:2n-6, but of the two, SBO provides C18:3n-3 with a C18:2n-6:C18:3n-3 ratio of 7.1. Epidemiological evidence has suggested an inverse relationship between the consumption of diets high in vegetable fat and blood pressure, although clinical findings have been inconclusive. Recent dietary guidelines suggest the desirability of decreasing consumption of total and saturated fat and cholesterol, an objective that can be achieved by substituting such oils as SFO and SBO for animal fats. Such changes have consistently resulted in decreased total and low-density-lipoprotein cholesterol, which is thought to be favorable with respect to decreasing risk of cardiovascular disease. Also, decreases in high-density-lipoprotein cholesterol have raised some concern. Use of vegetable oils such as SFO and SBO increases C18:2n-6, decreases C20:4n-6, and slightly elevated C20:5n-3 and C22:6n-3 in platelets, changes that slightly inhibit platelet generation of thromboxane and ex vivo aggregation. Whether chronic use of these oils will effectively block thrombosis at sites of vascular injury, inhibit pathologic platelet vascular interactions associated with atherosclerosis, or reduce the incidence of acute vascular occlusion in the coronary or cerebral circulation is uncertain. Linoleic acid is needed for normal immune response, and essential fatty acid (EFA) deficiency impairs B and T cell-mediated responses. SBO and SFO can provide adequate linoleic acid for maintenance of the immune response. Excess linoleic acid has supported tumor growth in animals, an effect not verified by data from diverse human studies of risk, incidence, or progression of cancers of the breast and colon. Areas yet to be investigated include the differential effects of n-6- and n-3-containing oil on tumor development in humans and whether shorter-chain n-3 PUFA of plant origin such as found in SBO will modulate these actions of linoleic acid, as has been shown for the longer-chain n-3 PUFA of marine oil
    corecore