46 research outputs found

    Benthic Function and Structure in the Northern Gulf of Mexico Hypoxic Zone: Sediment Biogeochemistry and Macrobenthic Community Dynamics in the Dead Zone

    Get PDF
    Coastal low oxygen areas are expanding globally and are predicted to increase in size and duration due to climatic changes associated with a warming ocean. The Gulf of Mexico Hypoxic Zone (GoMHZ) is the second largest regularly occurring hypoxic habitat in the world and has increased in size since it was first mapped in the 1980s. The Mississippi Atchafalaya River System (MARS) floods the Louisiana continental shelf with fresh water high in nitrogenous compounds enhancing primary production which sinks to the sea floor. Stratification that occurs as a result of density differences and coastal currents creates a strong pycnocline that prevents bottom waters from being aerated causing seasonally hypoxic bottom waters (< 2.0 mg L^-1). The Mechanisms Controlling Hypoxia (MCH) project (hypoxia.tamu.edu) made regular cruises during 2004-2005 and 2007-2009 to the GoMHZ performing shelf wide hydrographic surveys and occupying central mooring sites within theoretical zones of differing hypoxic potential. Sediment cores were collected for incubation experiments using Batch Microincubation Chambers (BMICs) to measure rates of sediment community oxygen consumption and nutrient regeneration. Results of incubation experiments characterized sediments as net sources of dissolved inorganic nitrogen, mostly ammonium, and silicate and a net sink of phosphate. Modeling simulations of benthic-pelagic coupling focused in the western study zones related field measurements of benthic nutrient regeneration and primary production to important processes that maintain summertime hypoxia when surface waters are nitrogen limited. After incubations were completed macrofaunal individuals were removed from the cores enumerated and identified to the lowest possible taxon. Macrofauna communities in 2004-2005 were dominated by a hypoxia tolerant community dominated by polychaetes. Hurricanes Katrina and Rita in August and September of 2005 drastically reorganized macrobenthic communities decreasing abundances and negatively impacting diversity. These new communities collapsed under hypoxic stresses potentially impacting the ability of demersal foragers to utilize an important food resource. Large variations in biogeochemical fluxes and patchy distribution of fauna impeded the delineation of significant zones in benthic function and structure

    Macrobenthic community structure and total sediment respiration at cold hydrocarbon seeps in the northern Gulf of Mexico

    Get PDF
    Cold seeps are areas of high biomass in the deep-sea, the impacts of these food-rich environments upon the sediment community is unknown in the Gulf of Mexico. The structure and function of benthic communities was investigated at food-rich and food-limited sites on the northern Gulf of Mexico continental slope. Cold seeps were richer in macrofauna densities and total sediment respiration, but were poorer in biomass and taxa diversity than normal slope communities. Decreased diversity is seen at most chemosynthetic communities and suggests a competition for resources. The spatial extent of these results at seeps is unknown and may be a localized, bioenhancement effect caused by seeping fluids

    Benthic Function and Structure in the Northern Gulf of Mexico Hypoxic Zone: Sediment Biogeochemistry and Macrobenthic Community Dynamics in the Dead Zone

    Get PDF
    Coastal low oxygen areas are expanding globally and are predicted to increase in size and duration due to climatic changes associated with a warming ocean. The Gulf of Mexico Hypoxic Zone (GoMHZ) is the second largest regularly occurring hypoxic habitat in the world and has increased in size since it was first mapped in the 1980s. The Mississippi Atchafalaya River System (MARS) floods the Louisiana continental shelf with fresh water high in nitrogenous compounds enhancing primary production which sinks to the sea floor. Stratification that occurs as a result of density differences and coastal currents creates a strong pycnocline that prevents bottom waters from being aerated causing seasonally hypoxic bottom waters (< 2.0 mg L^-1). The Mechanisms Controlling Hypoxia (MCH) project (hypoxia.tamu.edu) made regular cruises during 2004-2005 and 2007-2009 to the GoMHZ performing shelf wide hydrographic surveys and occupying central mooring sites within theoretical zones of differing hypoxic potential. Sediment cores were collected for incubation experiments using Batch Microincubation Chambers (BMICs) to measure rates of sediment community oxygen consumption and nutrient regeneration. Results of incubation experiments characterized sediments as net sources of dissolved inorganic nitrogen, mostly ammonium, and silicate and a net sink of phosphate. Modeling simulations of benthic-pelagic coupling focused in the western study zones related field measurements of benthic nutrient regeneration and primary production to important processes that maintain summertime hypoxia when surface waters are nitrogen limited. After incubations were completed macrofaunal individuals were removed from the cores enumerated and identified to the lowest possible taxon. Macrofauna communities in 2004-2005 were dominated by a hypoxia tolerant community dominated by polychaetes. Hurricanes Katrina and Rita in August and September of 2005 drastically reorganized macrobenthic communities decreasing abundances and negatively impacting diversity. These new communities collapsed under hypoxic stresses potentially impacting the ability of demersal foragers to utilize an important food resource. Large variations in biogeochemical fluxes and patchy distribution of fauna impeded the delineation of significant zones in benthic function and structure

    Microbial community diversity within sediments from two geographically separated hadal trenches

    Get PDF
    Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments—the Mariana and Kermadec trenches—to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for high-pressure incubations

    Polychaete Annelid Biomass Size Spectra: The Effects of Hypoxia Stress

    No full text
    Quantitative benthic samples were taken during spring and summer at three locations on the Louisiana continental shelf from 2004 to 2012 to assess the influence of hypoxia on the mean sizes (wet weight) of polychaete annelid worms. While the mean body size over the entire study of 64 samples was 3.99 ± 4.66 mg wet weight per individual, the mean ranged from 2.97 ± 2.87 mg during consistently hypoxic conditions (&lt;2 mg/L) to a high of 7.13 ± 7.60 mg ( &lt; 0.01) under oxic conditions (&gt;2 mg/L). The variations in size within assemblages were estimated from conventional biomass size spectra (BSS) and normalized biomass size spectra (NBSS) across a broad range of oxygen concentrations. The decline in size was due to the elimination of large species under hypoxic conditions (&lt;2 mg/L), not a reduction in size within species. At &quot;severe&quot; levels of hypoxia (&lt;1 mg/L), the smallest species also declined in abundance, whereas the ubiquitous &quot;medium-sized&quot; Paraprionospio pinnata flourished. These results suggest that there will be enhanced selection for small sizes and species with enlarged branchial palps such as those in P. pinnata if, as predicted, hypoxia becomes more commonplace in time and space worldwide

    Energetic increases lead to niche packing in deep-sea wood falls

    No full text
    Mechanisms leading to variation in diversity over energetic gradients continue to challenge ecologists. Changes in diversity may reflect the environmental capacity to support species’ coexistence through increased niche packing or niche space expansion. Current ecological theory predicts that increases in energy may lead to both scenarios but not their relative strengths. We use experimental deep-sea, wood-fall communities, where energy supply can be controlled, to test for the importance of niche expansion and packing in functional space over an energetic gradient. Invertebrate communities were identified and counted from 16 Acacia sp. logs ranging in size from 0.6 to 20.6 kg in mass (corresponding to energy availability) deployed at 3203 m in the Pacific Ocean for 5 years. We use four fundamental energetic species-level functional traits—food source, trophic category, motility and tiering— to characterize species niches. Increases in energy on wood falls lead to increases in species richness. This higher species richness resulted from a substantial increase in mean niche overlap, suggesting that increases in energy may afford reduced competition

    Alligators in the abyss: The first experimental reptilian food fall in the deep ocean.

    No full text
    The high respiration rates of the deep-sea benthos cannot be sustained by known carbon supply pathways alone. Here, we investigate moderately-sized reptilian food falls as a potential alternative carbon pathway. Specifically, three individual carcasses of Alligator mississippiensis were deployed along the continental slope of the northern Gulf of Mexico at depths of ~2000m in early 2019. We posit the tough hide of alligators would impeded scavengers by limiting access to soft tissues of the alligator fall. However, the scavengers began consuming the food fall 43 hours post-deployment for one individual (198.2cm, 29.7kg), and the carcass of another individual (175.3 cm, 19.5kg) was completely devoid of soft tissue at 51 days post-deployment. A third individual (172.7cm, 18.5kg) was missing completely after 8 days, with only the deployment harness and weight remaining drug 8 meters away, suggesting a large elasmobranch scavenger. Additionally, bones recovered post-deployment reveal the first observations of the bone-eating Osedax in the Gulf of Mexico and are confirmed here as new to science. The findings of this study indicate the quick and successful utilization of terrestrial and aquatic-based carbon food sources in the deep marine environment, though outcome variability may be high

    Data from: Energetic increases lead to niche packing in deep-sea wood falls

    No full text
    Mechanisms leading to variation in diversity over energetic gradients continue to challenge ecologists. Changes in diversity may reflect the environmental capacity to support species’ coexistence through increased niche packing or niche space expansion. Current ecological theory predicts increases of energy may lead to both scenarios but not their relative strengths. We use experimental deep-sea, wood-fall communities, where energy supply can be controlled, to test for the importance of niche expansion and packing in functional space over an energetic gradient. Invertebrate communities were identified and counted from 16 Acacia sp. logs ranging in size from 0.6 to 20.6 kg in mass (corresponding to energy availability) deployed at 3203 m in the Pacific Ocean for 5 years. We use four fundamental energetic species-level functional traits--food source, trophic category, motility, and tiering--to characterize species niches. Increases in energy on wood falls lead to increases of species richness. This higher species richness resulted from a substantial increase in mean niche overlap, suggesting that increases in energy may afford reduced competition
    corecore