38 research outputs found
Prevalence Distribution and Risk Factors for Schistosoma hematobium Infection among School Children in Blantyre, Malawi
Schistosoma hematobium infection is a parasitic infection endemic in Malawi. Schistosomiasis usually shows a focal distribution of infection and it is important to identify communities at high risk of infection and assess effectiveness of control programs. We conducted a survey in one district in Malawi to determine prevalence and factors associated with S. hematobium infection among primary school pupils. Using a questionnaire, information on history of passing bloody urine and known risk factors associated with infection was collected. Urine samples were collected and examined for S. hematobium eggs. One thousand one hundred and fifty (1,150) pupils were interviewed, and out of 1,139 pupils who submitted urine samples, 10.4% were infected. Our data showed that male gender, child's knowledge of an existing open water source (includes river, dam, springs, lake, etc.) in the area, history of urinary schistosomiasis in the past month, distance of less than 1 km from school to nearest open water source and age 8–10 years compared to those 14 years and older were independently associated with infection. These findings suggest that children attending schools in close proximity to open water sources are at increased risk of infection
Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey
<p>Abstract</p> <p>Background</p> <p>The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The objective of this study was to identify environmental risk factors for malaria transmission using remote sensing technologies to guide malaria control interventions in a region of declining burden of malaria.</p> <p>Methods</p> <p>Satellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province, Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness, topographic position index and hydrological models of stream networks.</p> <p>Results</p> <p>A total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of RDT positive households and incident infections were more likely to be located in high-risk areas derived from prevalence data. Based on the spatial risk map, targeting households in the top 80<sup>th </sup>percentile of malaria risk would require malaria control interventions directed to only 24% of the households.</p> <p>Conclusions</p> <p>Remote sensing technologies can be used to target malaria control interventions in a region of declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria elimination.</p
Spatial distribution of Schistosoma mansoni infection before and after chemotherapy with two praziquantel doses in a community of Pernambuco, Brazil
Praziquantel chemotherapy has been the focus of the Schistosomiasis Control Program in Brazil for the past two decades. Nevertheless, information on the impact of selective chemotherapy against Schistosoma mansoni infection under the conditions confronted by the health teams in endemic municipalities remains scarce. This paper compares the spatial pattern of infection before and after treatment with either a 40 mg/kg or 60 mg/kg dose of praziquantel by determining the intensity of spatial cluster among patients at 180 and 360 days after treatment. The spatial-temporal distribution of egg-positive patients was analysed in a Geographic Information System using the kernel smoothing technique. While all patients became egg-negative after 21 days, 17.9% and 30.9% reverted to an egg-positive condition after 180 and 360 days, respectively. Both the prevalence and intensity of infection after treatment were significantly lower in the 60 mg/kg than in the 40 mg/kg treatment group. The higher intensity of the kernel in the 40 mg/kg group compared to the 60 mg/kg group, at both 180 and 360 days, reflects the higher number of reverted cases in the lower dose group. Auxiliary, preventive measures to control transmission should be integrated with chemotherapy to achieve a more enduring impact
Spatial and Genetic Epidemiology of Hookworm in a Rural Community in Uganda
There are remarkably few contemporary, population-based studies of intestinal nematode infection for sub-Saharan Africa. This paper presents a comprehensive epidemiological analysis of hookworm infection intensity in a rural Ugandan community. Demographic, kinship, socioeconomic and environmental data were collected for 1,803 individuals aged six months to 85 years in 341 households in a cross-sectional community survey. Hookworm infection was assessed by faecal egg count. Spatial variation in the intensity of infection was assessed using a Bayesian negative binomial spatial regression model and the proportion of variation explained by host additive genetics (heritability) and common domestic environment was estimated using genetic variance component analysis. Overall, the prevalence of hookworm was 39.3%, with the majority of infections (87.7%) of light intensity (≤1000 eggs per gram faeces). Intensity was higher among older individuals and was associated with treatment history with anthelmintics, walking barefoot outside the home, living in a household with a mud floor and education level of the household head. Infection intensity also exhibited significant household and spatial clustering: the range of spatial correlation was estimated to be 82 m and was reduced by a half over a distance of 19 m. Heritability of hookworm egg count was 11.2%, whilst the percentage of variance explained by unidentified domestic effects was 17.8%. In conclusion, we suggest that host genetic relatedness is not a major determinant of infection intensity in this community, with exposure-related factors playing a greater role
Impact of insecticide-treated bed nets on malaria transmission indices on the south coast of Kenya
<p>Abstract</p> <p>Background</p> <p>Besides significantly reducing malaria vector densities, prolonged usage of bed nets has been linked to decline of <it>Anopheles gambiae </it>s.s. relative to <it>Anopheles arabiensis</it>, changes in host feeding preference of malaria vectors, and behavioural shifts to exophagy (outdoor biting) for the two important malaria vectors in Africa, <it>An. gambiae </it>s.l. and <it>Anopheles funestus</it>. In southern coastal Kenya, bed net use was negligible in 1997-1998 when <it>Anopheles funestus </it>and <it>An. gambiae </it>s.s. were the primary malaria vectors, with <it>An. arabiensis </it>and <it>Anopheles merus </it>playing a secondary role. Since 2001, bed net use has increased progressively and reached high levels by 2009-2010 with corresponding decline in malaria transmission.</p> <p>Methods</p> <p>To evaluate the impact of the substantial increase in household bed net use within this area on vector density, vector composition, and human-vector contact, indoor and outdoor resting mosquitoes were collected in the same region during 2009-2010 using pyrethrum spray catches and clay pots for indoor and outdoor collections respectively. Information on bed net use per sleeping spaces and factors influencing mosquito density were determined in the same houses using Poisson regression analysis. Species distribution was determined, and number of mosquitoes per house, human-biting rates (HBR), and entomological inoculation rate (EIR) were compared to those reported for the same area during 1997-1998, when bed net coverage had been minimal.</p> <p>Results</p> <p>Compared to 1997-1998, a significant decline in the relative proportion of <it>An. gambiae </it>s.s. among collected mosquitoes was noted, coupled with a proportionate increase of <it>An. arabiensis</it>. Following > 5 years of 60-86% coverage with bed nets, the density, human biting rate and EIR of indoor resting mosquitoes were reduced by more than 92% for <it>An. funestus </it>and by 75% for <it>An. gambiae </it>s.l. In addition, the host feeding choice of both vectors shifted more toward non-human vertebrates. Besides bed net use, malaria vector abundance was also influenced by type of house construction and according to whether one sleeps on a bed or a mat (both of these are associated with household wealth). Mosquito density was positively associated with presence of domestic animals.</p> <p>Conclusions</p> <p>These entomological indices indicate a much reduced human biting rate and a diminishing role of <it>An. gambiae </it>s.s. in malaria transmission following high bed net coverage. While increasing bed net coverage beyond the current levels may not significantly reduce the transmission potential of <it>An. arabiensis</it>, it is anticipated that increasing or at least sustaining high bed net coverage will result in a diminished role for <it>An. funestus </it>in malaria transmission.</p
Spatial distribution and risk factors of Schistosoma haematobium and hookworm infections among schoolchildren in Kwale, Kenya
Background: Large-scale schistosomiasis control programs are implemented in regions with diverse social and economic environments. A key epidemiological feature of schistosomiasis is its small-scale heterogeneity. Locally profiling disease dynamics including risk factors associated with its transmission is essential for designing appropriate control programs. To determine spatial distribution of schistosomiasis and its drivers, we examined schoolchildren in Kwale, Kenya. Methodology/Principal findings: We conducted a cross-sectional study of 368 schoolchildren from six primary schools. Soil-transmitted helminths and Schistosoma mansoni eggs in stool were evaluated by the Kato-Katz method. We measured the intensity of Schistosoma haematobium infection by urine filtration. The geometrical mean intensity of S. haematobium was 3.1 eggs/10 ml urine (school range, 1.4?9.2). The hookworm geometric mean intensity was 3.2 eggs/g feces (school range, 0?17.4). Heterogeneity in the intensity of S. haematobium and hookworm infections was evident in the study area. To identify factors associated with the intensity of helminth infections, we utilized negative binomial generalized linear mixed models. The intensity of S. haematobium infection was associated with religion and socioeconomic status (SES), while that of hookworm infection was related to SES, sex, distance to river and history of anthelmintic treatment. Conclusions/Significance: Both S. haematobium and hookworm infections showed micro-geographical heterogeneities in this Kwale community. To confirm and explain our observation of high S. haematobium risk among Muslims, further extensive investigations are necessary. The observed small scale clustering of the S. haematobium and hookworm infections might imply less uniform strategies even at finer scale for efficient utilization of limited resources