3,451 research outputs found

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Quantum sticking, scattering and transmission of 4He atoms from superfluid 4He surfaces

    Get PDF
    We develop a microscopic theory of the scattering, transmission, and sticking of 4He atoms impinging on a superfluid 4He slab at near normal incidence, and inelastic neutron scattering from the slab. The theory includes coupling between different modes and allows for inelastic processes. We find a number of essential aspects that must be observed in a physically meaningful and reliable theory of atom transmission and scattering; all are connected with multiparticle scattering, particularly the possibility of energy loss. These processes are (a) the coupling to low-lying (surface) excitations (ripplons/third sound) which is manifested in a finite imaginary part of the self energy, and (b) the reduction of the strength of the excitation in the maxon/roton region

    Employer Perceptions about Addiction Recovery and Hiring Decisions

    Get PDF
    Drug and alcohol addiction is a nationwide epidemic with an increasing number of Americans being affected. Individuals who seek treatment for their addiction often face barriers, such as costs, waiting time, and available support, and those who are able to receive treatment are likely to experience or anticipate stigma from others. Existing literature has found that many employers have negative perceptions of individuals in addiction recovery. However, there is limited research that has analyzed whether these negative perceptions affect hiring decisions. We predicted that employers would have negative perceptions of those in recovery, would be less likely to hire individuals in recovery, and that those with previous substance misuse would perceive stigma from employers. A survey was completed by 53 employers using the REDCap web platform. There were 23 respondents who had a history of substance misuse. The survey contained items from the Addiction Attitudes and Beliefs Scale (AABS) and the Tobacco, Alcohol, Prescription medication, and other Substance use Tool (TAPS). The AABS contained modified items from the Substance Use Stigma Mechanisms Scale (SU-SMS) and the Perceived Stigma Addiction Scale (PSAS). Results indicated that the majority of employers had negative perceptions of people in addiction recovery, but employers were willing to hire those individuals. Results suggested that those with a history of addiction perceived stigma from their employers. Limitations of this study include lack of generalizability due to the small sample size and limited geographic area. Participants may have reported in a way that would make them appear socially desirable

    Fracture toughness of the cancellous bone of FNF femoral heads in relation to its microarchitecture

    Get PDF
    This study considers the relationship between microarchitecture and mechanical properties for cancellous bone specimens collected from a cohort of patients who had suffered fractured necks of femur. OP is an acute skeletal condition with huge socioeconomic impact [1] and it is associated with changes in both bone quantity and quality [2], which affect greatly the strength and toughness of the tissue [3].Support was provided by the EPSRC (EP/K020196: Point-ofCare High Accuracy Fracture Risk Prediction), the UK Department of Transport under the BOSCOS (Bone Scanning for Occupant Safety) project, and approved by Gloucester and Cheltenham NHS Trust hospitals under ethical consent (BOSCOS – Mr. Curwen CI REC ref 01/179G)

    Silvopastoral Agroforestry in Upland and Lowland UK Grassland: Tree Growth and Animal Performance

    Get PDF
    Trees, individually protected from herbivore damage using plastic shelters, were planted at two densities (100 and 400 stems/ha) into sheepgrazed pasture in upland and lowland UK grassland sites in 1988. Tree and animal performance were compared with conventional forestry (no sheep) and pasture (no tree) systems. Effects on tree growth and survival are highly species and site dependent although some treatment effects did emerge. Tree shelters encouraged rapid early height growth compared to forestry controls although in some cases tree form was also adversely affected. Generally tree performance within agroforestry treatments was better at the higher planting density. Eight years after planting there has been no reduction in animal production despite interception of up to 10% of total photosynthetically active radiation by the developing tree canopy

    Human factors in the design of sustainable built environments

    Get PDF
    Scientific research provides convincing evidence that climate change is having significant impacts on many aspects of life. In the built-environment domain, regulatory requirements are pushing the challenges of environmental, economic, and social sustainability at the core of the professional agenda, although the aims of carbon reduction and energy conservation are frequently given a priority over occupants' comfort, well-being, and satisfaction. While most practitioners declare to embrace sustainability as a driver of their professional approach, a general lack of integrated creative and technical skills hinders the design of buildings centred on articulate and comprehensive sustainability goals, encompassing, other than energy criteria, also human-centred and ethical values founded on competent and informed consideration of the requirements of the site, the programme, and the occupants. Built environments are designed by humans to host a range of human activities. In response, this article aims to endorse a sustainable approach to design founded on the knowledge arising from scholarly and evidence-based research, exploring principles and criteria for the creation and operation of human habitats that can respond to energy and legislative demands, mitigate their environmental impacts, and adapt to new climate scenarios, while elevating the quality of experience and delight to those occupying them

    Variability Abstraction and Refinement for Game-Based Lifted Model Checking of Full CTL

    Get PDF
    One of the most promising approaches to fighting the configuration space explosion problem in lifted model checking are variability abstractions. In this work, we define a novel game-based approach for variability-specific abstraction and refinement for lifted model checking of the full CTL, interpreted over 3-valued semantics. We propose a direct algorithm for solving a 3-valued (abstract) lifted model checking game. In case the result of model checking an abstract variability model is indefinite, we suggest a new notion of refinement, which eliminates indefinite results. This provides an iterative incremental variability-specific abstraction and refinement framework, where refinement is applied only where indefinite results exist and definite results from previous iterations are reused. The practicality of this approach is demonstrated on several variability models

    Large eddy simulation of a coal flame: estimation of the flicker frequency under air and oxy-fuel conditions

    Get PDF
    Fossil fuel combustion, such as coal combustion, currently meets the majority of the global energy demand; however, the process also produces a significant proportion of the worldwide CO2 greenhouse gas emissions. Further improvement in the efficiency and control of the combustion process is needed, as well as the implementation of novel technologies such as carbon capture and storage (CCS). Oxy-fuel combustion is a very promising CCS technology, where the air in the combustion process is replaced with a mixture of recycled flue gas and oxygen producing a high CO2 outflow that can effectively be processed or stored. The adjustment of the combustion environment within the boiler resulting from the high CO2 concentration will modify the flame characteristics. It is therefore important to evaluate properly the changes of the flame that occur with different flue gas recycle schemes. A coal flame is often characterised by its physical parameters, such as the flame size, shape, brightness and temperature, and it can be considered as a stable flame by the presence of ignition and the propagation of the flame. The oscillatory behaviour of a flame can be quantified by the flicker frequency obtained after the instantaneous variations of the flame parameters, and is used as a reference for flame stability. Computational Fluid Dynamics (CFD) is widely used to model coal combustion. This work compares the estimated flicker frequency taken from CFD calculations against measurements undertaken at the experimental facilities of the UKCCSRC Pilot-scale Advanced Capture Technology (PACT) located in South Yorkshire, UK. The 250 kW combustion test facility consists of a down-fired, refractory lined cylindrical furnace, which is 4 m in height with a 0.9 m internal diameter. The furnace is fitted with a scaled version of a commercially available Doosan Babcock low-NOx burner. The flame physical parameters are approximated from performing a Large Eddy Simulation (LES) using the CFD code ANSYS FLUENT v15. The flicker frequency obtained from the CFD approach is compared against the experimentally measured value from a 2D flame imaging system. A series of oxy-fuel cases are then examined in the same fashion in order to assess their flame stability and the boiler operational limit. The flicker frequency trend obtained from the computations and measurements helps to determine the dynamic response of the flame for different combustion environments, and the results will be applicable in determining the optimal recycle ratio applied in future oxy-fuel systems
    • …
    corecore