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We develop a microscopic theory of the scattering, transmission, and sticking of 4He atoms im-
pinging on a superfluid 4He slab at near normal incidence, and inelastic neutron scattering from the
slab. The theory includes coupling between different modes and allows for inelastic processes. We
find a number of essential aspects that must be observed in a physically meaningful and reliable
theory of atom transmission and scattering; all are connected with multiparticle scattering, par-
ticularly the possibility of energy loss. These processes are (a) the coupling to low-lying (surface)
excitations (ripplons/third sound) which is manifested in a finite imaginary part of the self energy,
and (b) the reduction of the strength of the excitation in the maxon/roton region.

The dynamics of liquid 4He films and the bulk fluid
near its free surface continues to be of considerable in-
terest. Experimental information is available about the
scattering of helium atoms from helium surfaces and films
[1–5]; from the dynamics of localized excitations within
the fluid, including excitation scattering from the sur-
face and quantum evaporation [5–8] ; and from inelas-
tic neutron scattering at grazing angles from adsorbed
films [9–12]. Moreover, information about the conden-
sate fraction in helium may be obtainable directly from
elastic transmission of 4He atoms through superfluid 4He
slabs [13]. The fact that helium slabs have been made in
the laboratory [14] leads to the prospect that the dy-
namic probes previously applied to adsorbed films and
bulk surfaces of helium can now be applied to slabs. The
slabs should produce simpler and thus easier to interpret
results than the adsorbed films.

We report here on the results of a manifestly micro-
scopic theoretical analysis of the dynamics of such a slab
at zero temperature. We find that atom scattering pro-
cesses are dominated by multi-particle events, particu-
larly the coupling to ripplons. This is in qualitative agree-
ment with the conclusions of Edwards and collaborators
[1–4] in their results for the related helium atom scat-
tering from the free surface of bulk helium. Our results
not only provide insight into the transmission and stick-
ing of a helium beam that was not previously available
from theory or experiment, it also provides detailed pre-
dictions for the anticipated experiments on slabs.

The theoretical method used here has been successfully
applied to the bulk [15,16], to adsorbed films [17,18] and
to droplets [19]; in the latter two it was successful in mak-
ing detailed and correct predictions about surface states
(ripplons and third sound) which also play a very im-
portant role in the slab geometry. The theory is adapted
here to the slab geometry, including scattering states. We
outline our theory and present some illuminating results

waves for at non-normal incidence which also provide in-
sights into quantum evaporation.
We consider the ground state of a slab of superfluid

4He of particle number 1.5 Å
−2

, corresponding to a thick-
ness of approximately 80 Å, and the dynamic structure
function that would be measured for neutron momentum
loss perpendicular to the slab. The density profile of this
slab in the ground state is shown in Fig. 1. The relevant
excited states may be written as

Ψλ(r1, . . . , rN ) = Fλ(r1, . . . , rN )Ψ0(r1, . . . , rN ), (1)

where Ψ0 is the ground state of the slab or an appropri-
ately optimized representation of the ground state, Fλ

is a complex excitation operator, and λ represents the
quantum numbers for these excited states. The excita-
tion energy for these states is given by

ǫλ =
〈Ψλ|H − E0|Ψλ〉

〈Ψλ|Ψλ〉
=

∑N

i=1

〈

Ψ0

∣

∣

∣

h̄2

2m
|∇iFλ|

2

∣

∣

∣
Ψ0

〉

〈Ψλ|Ψλ〉
.

(2)

The functions Fλ are solutions of an effective Schrödinger
equation obtained by functionally minimizing this exci-
tation energy with respect to F [20], by using correlated
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FIG. 1. The figure shows the density profile of the 4He slab
used here. The profile is symmetric around z = 0.
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basis function (CBF) perturbation theory [15], or by ex-
tremizing the action [16,17].
It is well-known from the theory of the phonon-roton

spectrum of bulk liquid 4He that these low excited states
are quantitatively accounted for by a wavefunction of this
type containing one- and two-body terms in Fλ [15–18]:

F =

N
∑

i=1

f1(ri) +

N
∑

i<j=1

f2(ri, rj). (3)

Retaining only f1 in the bulk case produces the famil-
iar Bijl-Feynman spectrum ǫk = h̄2k2/[2mS(k)] where k
is the wavenumber for the bulk excitation and S(k) is
the zero temperature x-ray structure factor. This excita-
tion energy is quantitatively correct at long wavelengths
and qualitatively correct in the maxon-roton regime (cf.
Fig. 2). Including f2 is sufficient to correct most of the
residual disagreement with experiment [15,16,18].
Our work reported herein is a further adaptation of

the above procedure for studying transmission, reflection
and sticking of incident particles. This is achieved by
solving our equations with the boundary condition that
there is an incoming particle beam of specified energy
and unit incoming flux, and an outgoing particle beam.
Far from the slab the particle is a plane wave with wave
number determined by the energy and the direction of
propagation.
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FIG. 2. The figure shows a grey-scale map of the dynamic
structure function S(k⊥, ω) for momenta k⊥ perpendicular to
the slab, and energies above the evaporation barrier h̄ω > −µ.
Also shown are (a) the experimental phonon-roton spectrum
[21], (circles), the Feynman spectrum h̄2k2/[2mS(k)] (dashed
line with diamonds) and the kinetic energy of the incoming
particle, −µ+ h̄2k2/2m (solid line).

For simplicity, in this letter we focus on the elastic
transmission and reflection of states with normal inci-
dence. Thus we may describe some of our results in
terms of reflection and transmission amplitudes R and T ,

respectively. At first glance we appear to be describing
a one-dimensional quantum mechanical scattering prob-
lem with the helium slab serving as a well or barrier, but
the actual situation is far richer: Since this scattering
“well” is composed of helium atoms, this is a generically
non-local problem when viewed at the one-body level.
The Bose exchange symmetry of the incoming atoms with
those in the slab requires a full symmetrization, as one
sees in the summations in Eq. (3). Moreover, the well
is dynamic: the incoming particle may produce excited
states, corresponding to inelastic processes, which may
result in the capture of the particle and/or the emission
of particles in states other than the elastic channel; this
includes multi-excitation channels in which the individ-
ual states carry momentum parallel to the surface. Of
particular importance are the effects of surface states,
where the incoming particle may stick; and the structure
of the surface, which can disperse the incoming particle
into a number of states of quasi-momentum differing sig-
nificantly from the momentum of the incoming particle.
Since the states that we are exploring will also be

excited by inelastic neutron scattering, it is useful to
first consider the dynamic structure factor S(k, ω) that
would be measured by neutrons scattered with momen-
tum change h̄k. This is obtained theoretically by us-
ing linear response theory to obtain the density-density
response function χ(k, ω) together with the relation
S(k, ω) = −Im χ(k, ω)/π. In the case of the bulk super-
fluid at low temperatures, S(k, ω) has a very sharp spec-
trum that maps out the bulk phonon-roton excitation en-
ergy as well as broad multi-excitation strength at higher
energies. Neutron scattering from adsorbed helium films
produces a similar phonon-roton structure when studied
as a function of the parallel momentum transfer h̄k‖ in
grazing angle scattering [18]. However the layered struc-
ture of these films broadens this phonon-roton structure
and produces surface and layer modes which are also de-
tected in the neutron scattering, but which complicate
the analysis [18] and interpretation of data. There is
no layering in the slab (cf. Fig. 1); thus the broad-
ening of the phonon-roton structure is significantly re-
duced for grazing angle scattering. Nevertheless, surface
modes are still present and would be observed similarly
to the adsorbed film system. However, if there is signif-
icant momentum transfer perpendicular to the surface,
one would expect significant surface effects on S(k;ω)
particularly for relatively thin slabs. Nevertheless it can
be seen from Fig. 2 that the calculated structure in S
for our 80 Å slab has substantial strength in the vicin-
ity of the bulk phonon-roton spectrum for perpendicular
momentum transfer k⊥, though it is noticeably broad-
ened and weakened. The fact that S(k⊥, ω) is effectively
parametrizable in terms of k⊥ should not be interpreted
to indicate that this is a good quantum number. Never-
theless it is clear from the figure that it is useful to use
k⊥ to approximately classify these modes.
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To examine the propagation of a helium atom normally
incident at energy h̄ω, we first exhibit the wave equation
satisfied by the one-body part of the excitation function
F . Defining the auxiliary function ψ(r) = f1(r)/

√

ρ1(r),
the equation for ψ is:

h̄2

2m

{

−∇2 +
∇2

√

ρ1(r)
√

ρ1(r)

}

ψ(r) +

∫

Σ(r, r′;ω)ψ(r′)d3r′

= h̄ω

{

ψ(r) +

∫

d3r′ [g2(r, r
′)− 1]

√

ρ1(r)ρ1(r′)ψ(r
′)

}

(4)

where ρ1 and g2 are the density and pair distribution of
the ground state, and Σ(r, r′;ω) is the self-energy. This
equation has the appearance of a one-body Schrödinger
equation with a non-local, non-hermitean “optical po-
tential”, which has its origin in the fact that this is a
many-body system. The derivation, and the approxima-
tions we use to calculate the self energy may be found in
Ref. [18]. In our approximation, it has the form

Σ(r, r′;ω) = −
1

2

∑

mn

Vmn(r)Vmn(r
′)

h̄(ωm + ωn − ω)− iη
(5)

where the Vmn(r) are three-phonon vertex functions de-
rived in Ref. [18], and ωm are the excitation energies
of the background; note that the state sums go over
both phonon and ripplon type excitations and include,
in particular, all parallel momenta. This feature is man-
ifested in the energy denominator which can cause the
self-energy to be complex.

The excited states consist of bound and continuum
states. The scattering states of a 4He atom from the
slab are continuum states. Thus equation (4) is solved
subject to the boundary conditions

ψ(r) =

{

eikz +Re−ikz for z → −∞
Teikz for z → ∞

(6)

where k is the positive root of ω = h̄k2/2m.

We have carried out calculations including both the
full, complex self-energy as well as the simpler, Feyn-
man approximation. The latter is equivalent to setting
f2(r, r

′) = 0 in the definition of the excitation factor F ,
which gives Σ(r, r′;ω) = 0 in equation (4), reducing the
equation to the one used by Edwards and Fatouros [2]
to describe scattering from the surface of the bulk liquid.
At that level, the stationary scattering states have the
unphysical property that the elastic single-particle flux
is conserved, i.e. |R|2 + |T |2 = 1.

Our results for |R| and |T | are summarized in Fig. 3.
It is seen in the middle panel of Fig. 3 that the reflection
coefficient |R| undergoes oscillations similar to those seen
in scattering from wells and barriers in one-dimensional
one-body quantum mechanics. The details are of course

different due to the fact that the effective dispersion rela-
tion inside the slab is quite different from the free-particle
spectrum, as can be seen in Fig. 2.

The self-energy has dramatic effects on the results:

The real part of the self-energy comes from virtual pro-
cesses that dress the Feynman states by allowing for fluc-
tuations of the short-ranged structure of the system. The
consequence is a significant improvement of the single ex-
citation energies, as is seen in Fig. 2.

The imaginary part of the self-energy comes from
the existence of multi-excitation states with total energy
equal to the single excitation state. Thus a single par-
ticle impinging on the surface has channels for decaying
into these multi-excitation states. (In our nomenclature,
a multi-excitation state is one in which the excitation
function F is primarily a product of single excitation F
factors. Thus, e.g., a two excitation state would be char-
acterized by a dominant term in equation (3) of the form
f2,ω(r, r

′) = f1,ωa
(r)f1,ωb

(r′) + f1,ωb
(r)f1,ωb

(r′), where
ω = ωa +ωb +O(N−1).) One consequence of this is that
the incoming atom can “stick” in the slab by decaying
to two or more bound states. Similarly it can decay into
bound states and an emitted particle of lower energy.
This leads to a significant reduction of |R|

2
+ |T |

2
< 1

as is seen in the top panel of Fig. 3. The difference

1−
[

|R|
2
+ |T |

2
]

is a measure of the atomic sticking plus

real inelastic scattering and transmission.
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FIG. 3. The absolute value of the transmission and reflec-
tion coefficients, T (lowest figure), R (middle figure) and the
intensity loss |R|2 + |T |2 (top figure) are shown as obtained
from the CBF calculation (solid lines). We also show the
Feynman approximation for |R| (middle figure, dashed line);
note that |R|2 + |T |2 = 1 in that approximation.

The change in the transmission coefficient is the most
dramatic effect of allowing for decay processes: Her-
mitean approximations for the self-energy all lead to
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the feature |R|2 + |T |2 = 1. In this aspect, our pre-
dictions differ dramatically from those of the Feynman
approximation as well as a more recent attempt [22] to
study quantum evaporation within time-dependent den-
sity functional theory. Our conclusions agree, however,
with those of Edwards and Fatouros [2] when damping
of reasonable magnitude is included.
Another interesting feature seen in Fig. 3 is that

the transmission coefficient has notable structure at and
above the roton energy which is largely missing from the
reflection coefficient. This structure is in part due to the
high density of states of the roton, and to the fact that
the phonon-roton spectrum is non-monotonic in this re-
gion, giving rise to degeneracies for energies between the
roton and the maxon. Moreover the absence of transla-
tional invariance in the z direction results in the incoming
plane-wave hybridizing with the degenerate states in the
slab. This is a surface effect, and would continue to exist
for very thick films and for the surface of the bulk.
An examination of the wavefunctions and the structure

of the self-energy shows that most of the sticking occurs
in the surface of incidence, with a further reduction of
amplitude at the back surface. By turning off the sur-
face state contributions to the imaginary part of the self-
energy (ripplons/third sound and other states localized
in the surface) we have seen that the main contribution
to this surface sticking comes from these surface states.
In conclusion, our adaptation of the microscopic the-

ory of excited states in inhomogeneous liquid 4He to de-
scribe quantum sticking, scattering and transmission of
4He atoms gives a clear picture of the many-body physics
of the interaction of a beam of 4He atoms with a liquid he-
lium surface. However the existence of a second surface,
at only approximately 80 Å behind the first in the present
work, makes a direct comparison to scattering from the
free surface of bulk liquid 4He ambiguous. A significant
fraction of the scattering from the slab occurs at the sec-
ond surface, contributing some signal to the reflection by
back propagation. Some of the sticking also happens at
the second surface. The remaining elastic transmission
into the vacuum can also be viewed as quantum evapo-
ration, as can be seen by examining the propagation of
localized wavepackets, wherein excitations in the interior
of the slab, produced by the incoming wavepacket at the
first surface, propagate to the second surface where he-
lium atoms are evaporated.
The main approximation in this work is that only de-

cay into two-excitation states is included. Opening other
inelastic channels would further reduce the amplitude of
the elastically scattered and transmitted atoms.
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