14,785 research outputs found
Generalized Massive Gravity and Galilean Conformal Algebra in two dimensions
Galilean conformal algebra (GCA) in two dimensions arises as contraction of
two copies of the centrally extended Virasoro algebra ( with ). The central charges of
GCA can be expressed in term of Virasoro central charges. For finite and
non-zero GCA central charges, the Virasoro central charges must behave as
asymmetric form . We propose that, the bulk
description for 2d GCA with asymmetric central charges is given by general
massive gravity (GMG) in three dimensions. It can be seen that, if the
gravitational Chern-Simons coupling behaves as of order
O() or (), the central charges
of GMG have the above dependence. So, in non-relativistic scaling
limit , we calculated GCA parameters and finite
entropy in term of gravity parameters mass and angular momentum of GMG.Comment: 9 page
Bounds on the force between black holes
We treat the problem of N interacting, axisymmetric black holes and obtain
two relations among physical parameters of the system including the force
between the black holes. The first relation involves the total mass, the
angular momenta, the distances and the forces between the black holes. The
second one relates the angular momentum and area of each black hole with the
forces acting on it.Comment: 13 pages, no figure
Collision damping in the pi 3He -> d'N reaction near the threshold
We present a simple quantum mechanical model exploiting the optical potential
approach for the description of collision damping in the reaction pi 3He -> d'N
near the threshold, which recently has been measured at TRIUMF. The influence
of the open d'N -> NNN channel is taken into account. It leads to a suppression
factor of about ten in the d' survival probability. Applications of the method
to other reactions are outlined.Comment: RevTeX4, 14 pages, 3 Postscript figures, uses epsfig.sty, to appear
in Phys.Rev.
(2+1)-Gravity Solutions with Spinning Particles
We derive, in 2+1 dimensions, classical solutions for metric and motion of
two or more spinning particles, in the conformal Coulomb gauge introduced
previously. The solutions are exact in the -body static case, and are
perturbative in the particles' velocities in the dynamic two-body case. A
natural boundary for the existence of our gauge choice is provided by some
``CTC horizons'' encircling the particles, within which closed timelike curves
occur.Comment: 30 pages, LaTeX, no figure
Extracting the depolarization coefficient D_NN from data measured with a full acceptance detector
The spin transfer from vertically polarized beam protons to Lambda or Sigma
hyperons of the associated strangeness production pp -> pK Lambda (Sigma) is
described with the depolarization coefficient D_NN. As the polarization of the
hyperons is determined by their weak decays, detectors, which have a large
acceptance for the decay particles, are needed. In this paper a formula is
derived, which describes the depolarization coefficient D_NN by count rates of
a 4 pi detector. It is shown, that formulas, which are given in publications
for detectors with restricted acceptance, are specific cases of this formula
for a 4 pi detector.Comment: Accepted for publication by Nuclear Instruments and Methods in
Physics Research Section
The first Frontier Fields cluster: 4.5{\mu}m excess in a z~8 galaxy candidate in Abell 2744
We present in this letter the first analysis of a z~8 galaxy candidate found
in the Hubble and Spitzer imaging data of Abell 2744, as part of the Hubble
Frontier Fields legacy program. We applied the most commonly-used methods to
select exceptionally high-z galaxies by combining non-detection and
color-criteria using seven HST bands. We used GALFIT on IRAC images for fitting
and subtracting contamination of bright nearby sources. The physical properties
have been inferred from SED-fitting using templates with and without nebular
emission. This letter is focussed on the brightest candidate we found
(m=26.2) over the 4.9 arcmin field of view covered by the WFC3.
It shows a non-detection in the ACS bands and at 3.6{\mu}m whereas it is
clearly detected at 4.5{\mu}m with rather similar depths. This break in the
IRAC data could be explained by strong [OIII]+H{\beta} lines at z~8 which
contribute to the 4.5{\mu}m photometry. The best photo-z is found at
z~8.0, although solutions at low-redshift (z~1.9) cannot be
completely excluded, but they are strongly disfavoured by the SED-fitting work.
The amplification factor is relatively small at {\mu}=1.490.02. The Star
Formation Rate in this object is ranging from 8 to 60 Mo/yr, the stellar mass
is in the order of M=(2.5-10) x 10Mo and the size is
r~0.350.15 kpc. This object is one of the first z~8 LBG candidates showing
a clear break between 3.6{\mu}m and 4.5{\mu}m which is consistent with the IRAC
properties of the first spectroscopically confirmed galaxy at a similar
redshift. Due to its brightness, the redshift of this object could potentially
be confirmed by near infrared spectroscopy with current 8-10m telescopes. The
nature of this candidate will be revealed in the coming months with the arrival
of new ACS and Spitzer data, increasing the depth at optical and near-IR
wavelengths.Comment: 4 pages, 2 figures, Accepted for publication in Astronomy and
Astrophysics Letter
Half-life Limit of 19Mg
A search for 19Mg was performed using projectile fragmentation of a 150
MeV/nucleon 36Ar beam. No events of 19Mg were observed. From the time-of-flight
through the fragment separator an upper limit of 22 ns for the half-life of
19Mg was established
Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations
Killing vector fields in three dimensions play important role in the
construction of the related spacetime geometry. In this work we show that when
a three dimensional geometry admits a Killing vector field then the Ricci
tensor of the geometry is determined in terms of the Killing vector field and
its scalars. In this way we can generate all products and covariant derivatives
at any order of the ricci tensor. Using this property we give ways of solving
the field equations of Topologically Massive Gravity (TMG) and New Massive
Gravity (NMG) introduced recently. In particular when the scalars of the
Killing vector field (timelike, spacelike and null cases) are constants then
all three dimensional symmetric tensors of the geometry, the ricci and einstein
tensors, their covariant derivatives at all orders, their products of all
orders are completely determined by the Killing vector field and the metric.
Hence the corresponding three dimensional metrics are strong candidates of
solving all higher derivative gravitational field equations in three
dimensions.Comment: 25 pages, some changes made and some references added, to be
published in Classical and Quantum Gravit
A numerical and symbolical approximation of the Nonlinear Anderson Model
A modified perturbation theory in the strength of the nonlinear term is used
to solve the Nonlinear Schroedinger Equation with a random potential. It is
demonstrated that in some cases it is more efficient than other methods.
Moreover we obtain error estimates. This approach can be useful for the
solution of other nonlinear differential equations of physical relevance.Comment: 21 pages and 7 figure
- …