16,542 research outputs found

    Comparative evaluation of solar, fission, fusion, and fossil energy resources, part 3

    Get PDF
    The role of nuclear fission reactors in becoming an important power source in the world is discussed. The supply of fissile nuclear fuel will be severely depleted by the year 2000. With breeder reactors the world supply of uranium could last thousands of years. However, breeder reactors have problems of a large radioactive inventory and an accident potential which could present an unacceptable hazard. Although breeder reactors afford a possible solution to the energy shortage, their ultimate role will depend on demonstrated safety and acceptable risks and environmental effects. Fusion power would also be a long range, essentially permanent, solution to the world's energy problem. Fusion appears to compare favorably with breeders in safety and environmental effects. Research comparing a controlled fusion reactor with the breeder reactor in solving our long range energy needs is discussed

    Unjamming a granular hopper by vibration

    Get PDF
    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics

    Infrared properties of SiC particles

    Get PDF
    We present basic laboratory infrared data on a large number of SiC particulate samples, which should be of great value for the interpretation of the 11.3 micron feature observed in the spectra of carbon-rich stars. The laboratory spectra show a wide variety of the SiC phonon features in the 10-13 micron wavelength range, both in peak wavelength and band shape. The main parameters determining the band profile are morphological factors as grain size and shape and, in many cases, impurities in the material. We discovered the interesting fact that free charge carriers, generated e.g. by nitrogen doping, are a very common characteristics of many SiC particle samples. These free charge carriers produce very strong plasmon absorption in the near and middle infrared, which may also heavily influence the 10-13 micron feature profile via plasmon-phonon coupling. We also found that there is no systematic dependence of the band profile on the crystal type (alpha- vs. beta-SiC). This is proven both experimentally and by theoretical calculations based on a study of the SiC phonon frequencies. Further, we give optical constants of amorphous SiC. We discuss the implications of the new laboratory results for the interpretation of the spectra of carbon stars.Comment: 17 pages, 12 figures. To appear in A&

    Theoretical calculations of radiant heat transfer properties of particle-seeded gases

    Get PDF
    Radiant heat transfer properties of particle seeded gases, including absorption and scattering characteristics of carbon, silicon, and tungste

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations

    Get PDF
    Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravitational field equations in three dimensions.Comment: 25 pages, some changes made and some references added, to be published in Classical and Quantum Gravit

    An Exact Conformal Symmetry Ansatz on Kaluza-Klein Reduced TMG

    Full text link
    Using a Kaluza-Klein dimensional reduction, and further imposing a conformal Killing symmetry on the reduced metric generated by the dilaton, we show an Ansatz that yields many of the known stationary axisymmetric solutions to TMG.Comment: 20 pages, 1 figure, v3: postprint, added one re

    All stationary axi-symmetric local solutions of topologically massive gravity

    Full text link
    We classify all stationary axi-symmetric solutions of topologically massive gravity into Einstein, Schr\"odinger, warped and generic solutions. We construct explicitly all local solutions in the first three sectors and present an algorithm for the numerical construction of all local solutions in the generic sector. The only input for this algorithm is the value of one constant of motion if the solution has an analytic centre, and three constants of motion otherwise. We present several examples, including soliton solutions that asymptote to warped AdS.Comment: 42 pages, 9 figures. v2: Changed potentially confusing labelling of one sector, added references. v3: Minor changes, matches published versio

    Granular Pressure and the Thickness of a Layer Jamming on a Rough Incline

    Full text link
    Dense granular media have a compaction between the random loose and random close packings. For these dense media the concept of a granular pressure depending on compaction is not unanimously accepted because they are often in a "frozen" state which prevents them to explore all their possible microstates, a necessary condition for defining a pressure and a compressibility unambiguously. While periodic tapping or cyclic fluidization have already being used for that exploration, we here suggest that a succession of flowing states with velocities slowly decreasing down to zero can also be used for that purpose. And we propose to deduce the pressure in \emph{dense and flowing} granular media from experiments measuring the thickness of the granular layer that remains on a rough incline just after the flow has stopped.Comment: 10 pages, 2 figure
    corecore