3,154 research outputs found

    Quantum chaos in nanoelectromechanical systems

    Full text link
    We present a theoretical study of the electron-phonon coupling in suspended nanoelectromechanical systems (NEMS) and investigate the resulting quantum chaotic behavior. The phonons are associated with the vibrational modes of a suspended rectangular dielectric plate, with free or clamped boundary conditions, whereas the electrons are confined to a large quantum dot (QD) on the plate's surface. The deformation potential and piezoelectric interactions are considered. By performing standard energy-level statistics we demonstrate that the spectral fluctuations exhibit the same distributions as those of the Gaussian Orthogonal Ensemble (GOE) or the Gaussian Unitary Ensemble (GUE), therefore evidencing the emergence of quantum chaos. That is verified for a large range of material and geometry parameters. In particular, the GUE statistics occurs only in the case of a circular QD. It represents an anomalous phenomenon, previously reported for just a small number of systems, since the problem is time-reversal invariant. The obtained results are explained through a detailed analysis of the Hamiltonian matrix structure.Comment: 14 pages, two column

    Optimal generation of Fock states in a weakly nonlinear oscillator

    Full text link
    We apply optimal control theory to determine the shortest time in which an energy eigenstate of a weakly anharmonic oscillator can be created under the practical constraint of linear driving. We show that the optimal pulses are beatings of mostly the transition frequencies for the transitions up to the desired state and the next leakage level. The time of a shortest possible pulse for a given nonlinearity scale with the nonlinearity parameter delta as a power law of alpha with alpha=-0.73 +/-0.029. This is a qualitative improvement relative to the value alpha=1 suggested by a simple Landau-Zener argument.Comment: 10 pages, 6 figure

    Anomalous quantum chaotic behavior in nanoelectromechanical structures

    Full text link
    It is predicted that for sufficiently strong electron-phonon coupling an anomalous quantum chaotic behavior develops in certain types of suspended electro-mechanical nanostructures, here comprised by a thin cylindrical quantum dot (billiard) on a suspended rectangular dielectric plate. The deformation potential and piezoelectric interactions are considered. As a result of the electron-phonon coupling between the two systems the spectral statistics of the electro-mechanic eigenenergies exhibit an anomalous behavior. If the center of the quantum dot is located at one of the symmetry axes of the rectangular plate, the energy level distributions correspond to the Gaussian Orthogonal Ensemble (GOE), otherwise they belong to the Gaussian Unitary Ensemble (GUE), even though the system is time-reversal invariant.Comment: 4 pages, pdf forma

    Perturbation of Tunneling Processes by Mechanical Degrees of Freedom in Mesoscopic Junctions

    Get PDF
    We investigate the perturbation in the tunneling current caused by non-adiabatic mechanical motion in a mesoscopic tunnel junction. A theory introduced by Caroli et al. \cite{bi1,bi2,bi3} is used to evaluate second order self-energy corrections for this non-equilibrium situation lacking translational invariance. Inelastic signatures of the mechanical degrees of freedom are found in the current-voltage I(V)I(V) characteristics. These give rise to sharp features in the derivative spectrum, d2I/dV2d^2I/dV^2.Comment: 22 pages LaTeX + 3 uuencoded PS picture

    Nonlinear response of a driven vibrating nanobeam in the quantum regime

    Full text link
    We analytically investigate the nonlinear response of a damped doubly clamped nanomechanical beam under static longitudinal compression which is excited to transverse vibrations. Starting from a continuous elasticity model for the beam, we consider the dynamics of the beam close to the Euler buckling instability. There, the fundamental transverse mode dominates and a quantum mechanical time-dependent effective single particle Hamiltonian for its amplitude can be derived. In addition, we include the influence of a dissipative Ohmic or super-Ohmic environment. In the rotating frame, a Markovian master equation is derived which includes also the effect of the time-dependent driving in a non-trivial way. The quasienergies of the pure system show multiple avoided level crossings corresponding to multiphonon transitions in the resonator. Around the resonances, the master equation is solved analytically using Van Vleck perturbation theory. Their lineshapes are calculated resulting in simple expressions. We find the general solution for the multiple multiphonon resonances and, most interestingly, a bath-induced transition from a resonant to an antiresonant behavior of the nonlinear response.Comment: 25 pages, 5 figures, submitted to NJ

    2018 Ottawa consensus statement : Selection and recruitment to the healthcare professions

    Get PDF
    Acknowledgments: The authors thank Tom Kinirons and Sarah Stott of Work Psychology Group for supporting the consensus group discussions and workshops, and in preparing the final manuscript. We also gratefully acknowledge Professor Lambert Schuwirth for his helpful comments on an earlier draft of this paperPeer reviewedPostprin

    Quantum theory of electromechanical noise and momentum transfer statistics

    Get PDF
    A quantum mechanical theory is developed for the statistics of momentum transferred to the lattice by conduction electrons. Results for the electromechanical noise power in the semiclassical diffusive transport regime agree with a recent theory based on the Boltzmann-Langevin equation. All moments of the transferred momentum are calculated for a single-channel conductor with a localized scatterer, and compared with the known statistics of transmitted charge.Comment: 10 pages, 2 figure

    Stamp transferred suspended graphene mechanical resonators for radio-frequency electrical readout

    Full text link
    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio-frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f=5-6 GHz producing modulation sidebands at f +/- fm. A mechanical resonance frequency up to fm=178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples, and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of DC bias voltage Vdc indicate that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large Vdc

    A network analysis to identify pathophysiological pathways distinguishing ischaemic from non-ischaemic heart failure

    Get PDF
    Aims Heart failure (HF) is frequently caused by an ischaemic event (e.g. myocardial infarction) but might also be caused by a primary disease of the myocardium (cardiomyopathy). In order to identify targeted therapies specific for either ischaemic or non‐ischaemic HF, it is important to better understand differences in underlying molecular mechanisms. Methods and results We performed a biological physical protein–protein interaction network analysis to identify pathophysiological pathways distinguishing ischaemic from non‐ischaemic HF. First, differentially expressed plasma protein biomarkers were identified in 1160 patients enrolled in the BIOSTAT‐CHF study, 715 of whom had ischaemic HF and 445 had non‐ischaemic HF. Second, we constructed an enriched physical protein–protein interaction network, followed by a pathway over‐representation analysis. Finally, we identified key network proteins. Data were validated in an independent HF cohort comprised of 765 ischaemic and 100 non‐ischaemic HF patients. We found 21/92 proteins to be up‐regulated and 2/92 down‐regulated in ischaemic relative to non‐ischaemic HF patients. An enriched network of 18 proteins that were specific for ischaemic heart disease yielded six pathways, which are related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. We identified five key network proteins: acid phosphatase 5, epidermal growth factor receptor, insulin‐like growth factor binding protein‐1, plasminogen activator urokinase receptor, and secreted phosphoprotein 1. Similar results were observed in the independent validation cohort. Conclusions Pathophysiological pathways distinguishing patients with ischaemic HF from those with non‐ischaemic HF were related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. The five key pathway proteins identified are potential treatment targets specifically for patients with ischaemic HF
    • 

    corecore