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A quantum-mechanical theory 1s developed for the statistics of momentum transferted to the lattice by
conduction electrons Results for the electtomechanical noise power 1n the semiclassical diffusive tiansport
regime agree with a 1ecent theory based on the Boltzmann-Langevin equation All moments of the transferred
momentum are calculated for a single channel conductor with a localized scatterer, and compared with the

known statistics of transmitted charge
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I. INTRODUCTION

Electtical current 1s the tiansfer of chaige ftom one end of
the conductor to the other The statistics of this chaige tians-
fer was mvestigated by Levitov and Lesovik ! It 1s binomial
for a single-channel conductor at zeio temperature and
double Poissonian at finite tempeiatwe i the tunneling
1egime 2 The second cumulant, the noise powet, has been
measured 10 a vaiety of systems > Ways of measuing the
thud cumulant have been proposed,?* but not yet cartied out

Electiical curnient also tansfers momentum to the lattice
The second cumulant, the electiomechanical noise power,
determines the mean-square displacement of an oscillator
thiough which a current 1s driven It has been studied
theoretically,’® and 1s expected to lie within the range of
sensitivity of nanomechamcal oscillators ° No theory exists
for hugher order cumulants of the transferred momentum
(which would deteimine higher cumulants of the oscillator
displacement) It 1s the puipose of the piesent papei to pro-
vide such a theory

In the context of charge tiansfer statistics there exist two
approaches a fully quantum-mechanical appioach using
Keldysh Gieen functions! !° and a semiclassical approach us-
mg the Boltzmann-Langevin equation '! Hete we take the
former appioach, to arive at a quantum theory of momen-
tum tiansfer statistics As a test, we show that the second
moment calculated fiom Keldysh Gieen functions comncides
mn the semuclassical limut with the 1esult obtained from the
Boltzmann Langevin equation by Shytov, Levitov, and one
of the authors 8

A calculation of the complete cumulant geneiating func-
tion of ttansfetred momentum (o1, equivalently, of oscillator
displacement) 1s piesented for the case of a single-channel
conductor with a localized scatteter The generating function
n this case can be wiitten entirely 1t terms of the ttansnmus
sion probability I" of the scatteter In the more geneial mul-
tichannel case one also needs a knowledge of the wave func
tions This 1s an essential difference fiom the chaige tiansfer
problem, which can be solved 1n tetms of transmission er-
genvalues for any numbe1 of channels At zeto tempetature
the momentum statistics 1s bimomual, just as for the chaige
At finite tempeiatuie 1t 18 multinomal, even m the limit I’
— 0, different from the double-Poissonian distribution of
chaige

The outline of the paper 1s as follows In Sec II we foi-
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mulate the problem 1n a way that 1s suttable fo1 further analy

sis The key technical step 1n that section 1s a unitaty tians-
formatton which eliminates the dependence of the election-
phonon coupling Hamiltonmian on the (unknown) scattering
potential of the disordeied lattice The 1esulting coupling
Hamultonian contains the electron momentum flow and the
phonon displacement In Sec II we use that Hamltonian to
detrve a geneial formula for the generating function of the
distribution of momentum transferied to a phonon (as well as
the distiibution of phonon displacements) It 1s the analog of
the Levitov-Lesovik foimula for the chaige-tiansfer
distitbution ! For a locahized scatteren we can evaluate this
statistics 1n terms of the scattering matiixx We show how to
do this 1n Sec IV, and give an application to a single-channel
conductor m Sec V In Secs VI and VII we turn to the case
that the scattering 1egion extends thioughout the conductor

We follow the Keldysh appioach to dertve a geneial formula
for the generatmg function, and check 1ts validity by 1ederiv-
mg the result of Ref 8 We conclude in Sec VIII with an
order-of-magmtude estimate of higher-order cumulants of
the momentum-tiansfer statistics

II. FORMULATION OF THE PROBLEM

The excritation of a phonon mode by conduction electrons
15 desciibed by the Hamiltonian

H=Qa'a+ > p*’2m+>, Vir,—Qu(r)], 1)

wheie we have set =1 The phonon mode has annihilation
opelatot a, fiequency , mass M, and displacement Qu(r),
whete 0=2MQ) Y a+a') 15 the amplitude operator
The electrons have position r,, momentum p,=—1d/dr,,
and mass m Elections and phonons aie coupled thiough the
ion potential V(r) We assume a zeio magnetic field
Election-election mteractions and the inteiactions of elec-
tions and phonons with an exteinal electiic field have also
been omutted

We assume that elections and phonons ate uncoupled at
time zero and measwie moments of the obseivable A of the
phonons after they have been coupled to the elections for a
time ¢ The operator A(a,a "y could be the amplitude Q of the
phonon mode, 1ts momentum P=—(MQ/2)*(a—a"), o
its energy (da'a The moment generating function for A 1s
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* m

F&)= 2 —(A"(1)=Tree Mpe!.  (2.2)
m= .

The initial density matrix p=p,p, is assumed to factorize

into an electron part and a phonon part.

We assume small displacements, so an obvious way to
proceed would be to linearize V(r— Qu) with respect to the
phonon amplitude Q. Such a procedure is complicated by the
fact that the resulting coupling —Qu-VV of electrons and
phonons depends on the ion potential V. Because of momen-
tum conservation, it should be possible to find the momen-
tum transferred by the electrons to the lattice without having
to consider explicitly the force —VV. In the semiclassical
calculation of Ref. 8 that goal is achieved by the continuity
equation for the flow of electron momentum. The unitary
transformation that we now discuss achieves the same pur-
pose in a fully quantum-mechanical framework.

What we need is a unitary operator U such that

UtV[r—Qu(r)JU=V(r). (2.3)

For constant uw we have simply U=exp[—iQu-p]. More
generally, for space-dependent u, we need to specify the op-
erator ordering (denoted by colons :---:) that all position
operators r stand to the left of the momentum operators p.
We also need to include a Jacobian determinant ||J|| to en-
sure unitarity of U. As shown in Appendix A, the desired
operator is

U= ”J”UZ:ehiQu(r)'p:’ Ja,b’: 5afﬁ— Qé)auﬂ(r)y (24)

with d,=d/dr,. All this was for a single electronic degree
of freedom. The corresponding operator for many electrons
is U=11,U;, where U, is given by Eq. (2.4) with r, p re-
placed by r;, p;.

Hamiltonian (2.1) transforms as UTHU=Hy+ Hy,, with

H0=QaTa+E [piz/2m+ Vir)], (2.5a)

1
Hyy=—QF— MPHJr O(v?). (2.5b)

Here F i1s the driving force of the phonon mode,

1
F= im Z [uaﬁ(ri)piapfﬁ+piauaﬁ(ri)piﬁ]+H'C’
(2.6)

and IT is the total electron momentum,

I=4> uw(r) -p,+Hec, 2.7
1
weighted with the (dimensionless) mode profile u(r). We
have defined the shear tensor u 5= %(aauﬁ dpity). The ab-
breviation H.c. indicates the Hermitian conjugate and a sum-
mation over repeated Cartesian indices «, 8 is implied.
The interaction Hamiltonian H;, is now independent of
the ion potential, as desired. In the first term — QF we rec-
ognize the momentum flux tensor, while the second term
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— PII/M is an inertial contribution to the momentum transfer.
The inertial contribution is of relative order QA /vy (A being
the wavelength of the phonon and vy the Fermi velocity of
the electrons) and typically <€1. In what follows we will
neglect it. We also neglect the terms in H;,, of second and
higher order in u, which contribute to order Ar/L to the
generating function (with L the length scale on which u var-
ies). These higher order interaction terms account for the
monlentum uncertainty of an electron upon a position mea-
surement by the phonon.

If we apply the unitary transformation U to generating
function (2.2), we need to transform not only H but also A

—U'AU=A4 and p— U'pU=p, resulting in

FE=Tr et ~it(Ho+ Hin) 5 it(Ho+ Hin), 2.8)

In Appendix A we show that, quite generally, the distinction

between p,A and p,A is irrelevant in the limit of a long
detection time ¢, and we will therefore ignore this distinction
in what follows.

If u is smooth on the scale of Az, so that gradients of u,g
can be neglected, one can apply the effective mass approxi-
mation to Hamiltonian (2.5). The ion potential V=V,
+ Vimp 1s decomposed into a contribution V), from the peri-
odic lattice and a contribution Vi, from impurities and
boundaries that break the periodicity. The effects of V, can
be incorporated in an effective mass m* (assumed to be de-
formation independent!*'?) and a corresponding quasimo-
mentum p*. The unperturbed Hamiltonian takes the usual
form

Ho=Qata+ 2, [pF22m* +Vip(r)]- (2.9)

As shown in Appendix B, the force operator in Hjy is then
expressed through the flow of quasi-momentum,

1
F=—72 phuaglr)pls, (2.10)
!

m*

whereas the inertial contribution is still given by Eq. (2.7) in
terms of the true electron momentum.

III. MOMENTUM TRANSFER STATISTICS
A. Generating function

A massive phonon mode absorbs the momentum that elec-
trons transfer to it without changing its displacement. We
may therefore define a statistics of momentum transfer to the
phonons without back action on the electrons by choosing
the observable A=P=~i(MQ/2)"(a—a") in Eq. (2.2)
and taking the limit M —cc, ) —0 at fixed M (). We assume
that the phonon mode is initially in the ground state, so that
ap,=0.

We transform to the interaction picture by means of the
identity

. 1
e’HOfe"H’zTexp[—if dt’Him(t’)}, 3.1
0
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whete 7 denotes tume ordering (eatlier tumes to the right of
later times) of the time-dependent opetator H,, ()
=e'fo'g e 0" In the massive phonon limit we have
H,(t)=—QF(t) with time-mdependent Q (since @ com-
mutes with Hy when (1—0) Equation (2 2) takes the foim

F(&)=(T. expl —1QK _(1)]e*F exp[1 0K+ (1)]),
(32)

whete K.(1)=[(dt+F(t.) and 7. denotes the Keldysh
time oiderng tunes ¢ to the left of times 7., eatlier 7 to
the left of later #_, eaihier 7, to the night of later 7.,

Taking the expectation value of the phonon degiee of
fieedom we find

&) =ef2M“’2< Texp [ LEK_+K,)— (_’f_;_;;_*)b
(33)

The factor exp(£M/2) ouginates from the uncertainty
(M) of the momentum of the phonon mode 1n the
giound state (vacuum fluctuations) It 1s a time-independent
additive contiibution to the second cumulant, and we can
omit 1t for long detection times The quadiatic teim
« K2 /M becomes small for a small uncertamty (M Q)2
of the displacement 1 the giound state It desciibes a back
action of the phonon mode on the electrons that peisists n
the masstve phonon limit (A similar effect 1s known m the
context of chaige counting statistics ) This term may be of
tmportance 1 some situations, but we will not consider 1t
hete, assuming that the election dynamics is nsensitive to
the vacuum fluctuations of the phonon mode

With these simplifications we arrive at a formula for the
momentum transfei statistics,

FE)=(Teexp[3¢K-_()]exp[16K+()]), (3 4)

that 1s of the same form as the formula for chatge counting
statistics due to Levitov and Lesovik !

fclmrge(f) :<Ti exp[%fJ—(f)] CXP[%§J+(1)]> (3 5)

The role of the mtegiated curtent J(t)= [¢dt'I(t') 1s taken
i ow problem by the integiated foice K(¢)

B. Relation to displacement statistics

Cumulants (A P(¢))) of the momentum transferied m a
time ¢ aie obtained fiom the cumulant generating function
In A& =2, (AP /n! Cumulants ((F(w)")) of the
Fourter nansformed foice F(w)=[dt e’ F(f) then follow
fiom the 1elation AP(#)= [{dt' F(¢') The himit r—o of a
long detection time coriesponds to the low-fiequency limit

< <H F(w,)> > ——>2775< > w,) llmé«AP(T)”»
1=1 o

=1

t—

(36

Cumulants of the Foutier transformed displacement Q(w)
of the oscillator follow fiom the phenomenological equation
of motion
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Q(w)=R(w)F(w), R(w)= %(Qz'—wz—zwﬂ/g)_l,
(37

where Q 15 the quality factor of the oscillator Since the force
noise 1s white until fiequencies that are typically > (), one
has, 1 a good appioximation,

(0

n

h l
=27T5( 2 w,) /];[1 R(w)llm;((AP(z)n»

=1

(38)

Optical o1 magnetomotive detection of the vibiation, as m
Refs 15-17, measuies the probability distiibution P(Q) of
the displacement at any given tume The cumulants of P(Q)
ate obtamed by a Fourier tiansformation of Eq (3 8)

1
(@M =R, hm—(AP(D))), (39)

. dw, fdw”R
n _'7T— (wl)

2 2

R(w,1)2W5( 211 w,)

=f_v dtR(1)" (3 10)

For Q> 1 the odd moments can be neglected, while the even
moments aie given by

1
Ry~ ’—(MQ)_Zkg,

~ 2k o =<

(3 11)

C. Validity of the massive phonon approximation

These 1esults were obtained m the massive phonon limit
Let us estimate how large M should be, for the simplest case
of the scatteting of an electton (mass m, velocity vy) by a

baitier (mass M, velocity Q) Fimte M corrections appeat
because a 1eflected electron transfe1s to the bariiei not only a

momentum 2p g but also an eneigy 6E=2p 0 This energy
transfer effectively changes the voltage drop over the batiier
by an amount 6V = §E/e, because 1eflected electrons suffer
this energy change wheiteas ttansmitted electrons do not

A voltage diop 8V creates a feedback loop The curient 1s
changed by /=G 8V, and hence the force on the bartien 18
changed by 8F=(2pr/e)dl, hence the velocity of the bat-
ner 1s changed by Q=10R(w)SF=41w(prle)’R(w)GQ
(in a Foutier 1epresentation) The feedback may be neglected
if Q<€ at the iesonance fiequency ) (wheie 1t 1s stron-
gest) Smce R(Q)=:Q/MQ? the 1equuement for neghgible
feedback, and theiefoie for the vahdity of the massive pho-
non approximation, 1s
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FIG 1 Sketch of a freely suspended wire The matrices ¢,¢' and
i,#7 describe transmussion and reflection by a localized scatterer
(shaded) A voltage V drives a current through the conductor, excit-
g a vibration

Gh Er m

[¢4

The left-hand side of this mequality 1s the product of thiee
large ratios (the quality factor, the dimensionless conduc-
tance, and the 1atio of Fermu energy over phonon energy) and
one small 1at10 (the election mass over the mass of the 1eso-
nato1) For typtcal patameter values of a single-channel con-
ductor one has Gh/e’<1, M=10"kg, Q/27=5 GHz,
and Ex/A=05 10" Hz, yielding a<107* for Q=10°

IV. EVALUATION IN TERMS OF THE
SCATTERING MATRIX

The Levitov-Lesovik formula [Eq (3 5)] for the chaige
transfer statistics can be evaluated m terms of the scatterng
matrix of the conductor,! ' without an explicit knowledge
of the scattering states This 1s possible because the cuilent
opetator depends only on the asymptotic foim of the scattet-
mg states, far fiom the scattering region Foimula (3 4) for
the momentum-transfer statistics can be evaluated m a simi-
la1 way, but only 1f the mode profile u(r) 1s appioximately
constant over the scatteiing iegion

To this end, we fi1st wiite foice operator (2 6) in second
quantized form using a basis of scatteiing states ¢, (1)

dede’ /
R = [ [ 5 5 eef (e My (e e (2
41

1
nn

1
Mnn’(E’SI): ;{J. dr l//nre(pauaﬁpﬂ

+[[”a,B’Pa]’p,B])l//n’ e’ (4 2)

The operator ¢, (&) annithifates an election 1 the nth scat-
tering channel at eneigy ¢ The mode index n 1uns ftom 1 to
N (or fiom N+ 1 to 2N) for waves incident fiom the left (o1
fiom the 11ght) (See Fig | fo1 a diagiam of the geometiy,
and see Ref 20 foi the analogous 1eptesentation of the cui-
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1ent operator ) The commutator [[#,5.24],25] can be ne-
glected 1f u 1s smooth on the scale of the wavelength (hence
if \p/L<€1)

We assume that the deiivative u,z of the mode piofile
vanishes 1n the scattering tegion, so that for the scattering
states we may use the asymptotic foim

Yo (D= G0+ 2 Su(e) () @43)

m terms of mcident and outgomg waves ¢ " (notmalized

to unit curient) and the scattering matux S,,,(g) Since we

ate neglecting the Loientz foice we may assume that ¢,

=¢n®  The scattering matrix has the block structure
rot
S§= , 44
o @4)

with NXN tiansmussion and 1eflection matiices ¢, ¢/, and
1,r’ These matiices aie 1elated by umtaity (S=S7) and
possibly also by time-1eversal symmety (S=S57)

The opetator pi,.pp s Will couple only weakly the mnci-
dent to the outgong waves, provided u 1s smooth on the
scale of A -, and we neglect this coupling The matiix M then
sepatates mto mcident and outgoing paits

M(e,e’)=M"(g,e")+S ()M (e,6")S(e') (45)

The mattices M'™ and M " are defined as m Eq (4 2) with ¢
1eplaced by ¢™ and ¢°", 1espectively (They ate Heimttian
and related by M®"'=M"™* ) These two matiices vary with
energy on the scale of the Ferm eneigy £, while the scat-
tering matiix S has a much stionger eneigy dependence (on
the scale of the Thouless energy) We may theiefore 1eplace
M™, M°" by then value at e =&’ =E and assume that the
energy dependence of M 1s given entitely by the scattering
matt1x

The foice opeiator can similaily be sepaiated mto F
=F"4 Fo where F™ and FO" ate defined as in Eq (4 1)
with the matiix M 1eplaced by M™ and STM"S, iespec-
tively We now proceed n the same way as in Ref 19 for the
curient opetato1, by noting that the analyticity of S(e) 1n the
uppei half of the complex plane tmplies simple commutation
relations

[F”‘(t),F“‘(t’)]=O, [FOU[(Z),FOM(I‘/)]ZO, Vl‘,l",

(46)

[Fln(t),FOUt(l,)]:O lf t>tr
It follows that the Keldysh time oirdeiing 7. of the foice
opetatots 1s the same as the so-called mput-output ordeimng,
defined by moving the operators F(¢_) to the left and
F,(t,) to the 1ight of all other operators—iiiespective of the
value of the time aiguments The 1eason for pieferting input-
output ordeiing over time oidering 1s that Fouter tiansior-
mation fiom time to energy commutes with the foimer ot-
dering but not with the latter

In the hmit t—o different eneigies become uncoupled,
and the cumulant generating function takes the stmple form
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t Dl -out i
ln]:(g):ﬁf de h](eF (£)£2,F*N ()€, F (e)§/2>, 47

entuely analogous to the mput-output ordered formula for
charge transfer ' The Fouiier tiansformed force 1s defined as

F'(e)=cl(e)M"™(¢,8)c(e), (4 8a)
FO%e)=ct(e)ST(e)M™(&,e)S(&)c(e) (4 8b)
(The opetators ¢, have been collected m a vector ¢ )
The matiices M are block diagonal,
in out+y. (ML O ) 4 9
M"=M = ,
0 M, (49)

but the NXN matiices M, » aie 1 genetal not diagonal
themselves They take a simple form for a longitudinal pho-
non mode, when u 1s a function of x in the x duection (along
the conductor), so that u,4(r)=8,,6s,u'(x) The commu-
tator [{u’,p,],p,] does not contiibute because ¢ °™ 1s an
eigenstate of p, (with eigenvalue pi'=—p®=p ) Hence
for a longitudmal vibration one has

(ML)nn’: 5}1/1’Ipnl(u0—ML)’ (4 loa)

(MR)nn’:51m’|pn|(uR~u0) (4 IOb)

The value of u(x) 1n the scattering 1egion 1s denoted by i,
while u; and up denote the values at the left and 11ght ends
of the conductor The more complex situation of a tiansvetse
phonon mode, when the matiices M, » aie no longer diago-
nal, 1s treated m Ref 21

We aie now 1eady to calculate the expectation value m
Eq (47) We assume that the incident waves oniginate fiom
reservorrs 1n theimal equilibrium at temperatme 7, with a
voltage difference V between the left and 11ght 1eseivon The
Ferm function m the left (ight) tesetvou 1s f; (fg) We
collect the Fermi functions n a diagonal matrix f and write

fi 0)

0 fr
(4 11)

All other expectation values of ¢ and ¢ vanish We evaluate
Eq (4 7) with help of the deterrminantal identity

<H exp(cm,c>> =

1

<C2(8)cn'(8’)>:fnn’(8)5<8—‘9,)» f:(

, (412

L=f+£]] e
valid for an arbitiary set of matiices A,, and the 1dentity
exp(STAS)=5Tes, 4 13)

valid for unitary S The 1esult 1s

InF(&)= {—ﬂ_j de lnHl—f—l—femeS'(s)efMomS(e)H,
(4 14)

where we have also used that the two matiices M' and f
commute
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At zeto temperatuie f;=60(Ep+eV—¢) and fr=0(Er
—e) The eneigy 1ange e<Er, where f;=fr=1, contiib-
utes only to the first moment, while the eneigy range Ep
<eg<Ep+eV, wheie f,=1 and fr,=0, contnibutes to all
moments For small voltages we may neglect the enetgy de-
pendence of S(e) mn that range Using the block stiuctwe
[Eqs (4 4) and (4 9)], of S, M'™ °" the generating function for
the second and higher cumulants takes the foim

eVt . g ‘
1n]~'(§)=2—7;1n||1'e§Ml/+tTe§MRtl|+O(§) 4 15)

[By O(§) we mean terms linear in ¢ ] This detetminant can-
not be simplified further without knowledge of S That 1s a
major complication 1elative to the analogous formula for the
charge-transfer statistics,’ which can be cast entiely 1n terms
of the tiansmission eigenvalues I, (eigenvalues of 7z7)

t
In fchmge(g) = 2_7;[ ds; In[1 +Fn(66§'— ) f(1=fr)

+T,(e = D fr(1—f1)] (4 16)

In the case of momentum t1ansfer, eigenvalues and eigenvec-
tots both play a 1ole

V. APPLICATION TO A ONE-DIMENSIONAL CONDUCTOR
A. Straight wire

Fuither sumplification of Eqs (4 14) and (4 15) 1s possible
if the conductor 1s so narow that 1t supports only a single
propagating mode to the left and night of the scattering 1e-
gion (N=1) The scattening mattix then consists of scala
transmussion and 1eflection coefficients ¢,¢' and #,1’ (ielated
to each other by unitarity) We consider the case of a longi-
tudinal vibiation with

Up—up

0 Urp—Ug
[cf Eq (4 10)] Because of unitarity the result depends only
on the tiansmission probability I'=|¢]?=|¢t'|*=1—|r]*=

2
=,

Mln:Mout:pF( (5 l)

t
In F(§) = 2—7;J’ de In[ 1+ (X1 R0 — 1) f, fr

+ (e 10 D — Y[ f (L= fr)+ fr(1=f1)]
+(L=T) (2P o) — ) (1= fr)

+(L=D)(2Prte™s0—1)fe(1=f)]  (52)
At zero temperature this stmplifies further to
InF( &)= %gln[l +Tebrrluntu —2u0) T4+ O(§)
(53)

The zero-temperatwe statistics [Eq (5 3)] 1s bmonual,
just as for the charge [The genelating function Fy,,z(&) at
T=0 1s obtained friom Eq (5 3) after substitution of p (g
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+u;—2ug) by e, cf Eq (4 16) ] At finite temperatwies one
has the multinomual statistics [Eq (5 2)], made up of sto-
chastically independent elementaty processes with moie than
two possible outcomes The elementaiy processes may be
characterized by the numbers (nk,n%) e{0,1} of electrons
mcident on the scatterer from the left, 11ght and the numbers
(nk,.nR ) e{0,1} of outgoing elections to the left, 11ight The
non-vanishing  ptobabulities  P[(n%,nf)—(nk .n% )1 of
scattering events evaluate to

P[(0,0)—=(0,0)]=(1 ~f)(1 = fr),

P[(0,)—(0,1)]=(1—f1)fpr(1=T),
PL(0,1)—(1,0)]= (1 = fL)f&T 54)

P[(L,0)—(1L,0)]=f (1~ f)(1-T),
P(LO)—(0.1)]=F (1 ~fR)T,

These probabilities appear m generating function (5 3), mul-
tiplied by exponentials of ¢ times the amount of tiansferied
momentum

A longitudinal vibiation of a sttaight wire clamped at both
ends would coriespond to u;=up=0 and ug#0 In that
spectal case Eq (52) 18 equivalent to Eq (4 16) for
Feharge(§) under the subsutution '—1—T, 2ppug—e In
this case the multinomial statistics becomes a double-
Poissoman 1n the Itmut I'— 0, conesponding to two mdepen-
dent Poisson pirocesses originating fiom the left and night
1eservons 2 A longttudmal vibration 1s difficult to observe, m
contiast to a transvetse vibiation which can be observed
optically’> ' o1 magnetomotively 7 However, the dnect ex-
citation of a transverse mode 1S not possible m a smgle-
channel conductor, while in a multichannel conductor (width
W) 1t 1s smaller than the excitation of a longttudmal mode by
a factor (W/L) 22! So 1t would be desirable to find a way of
coupling longitudinal electron motion to tiansveise vibiation
modes In the following subsection we discuss how this can
be achieved by bending the wie

B. Bent wire

The bending of the wire 1s desciibed as explamed 1 Ref
22, by means of a vector £)(s) that 1otates the local coord:
nate system e,(s), €,(s), and e,(s) as one moves an 1nfini-
tesimal distance ds along the wie de,=QXe,ds The lo-
cal coordinate x 1s along the wne and y,z aie peipendicular
to it The component € of €} along the wie desciibes a
torsion (with [ Q| the torsion angle per unit length), while
the petpendicular component £}, desciibes the bending (with
[Q, ]! the radus of cuvatuie)

The momentum opetatois and wave functions, wiitten in
local coordinates, depend on the bending by terms of oider
7| @], which we assume to be <1 These quantities may
theiefoie be evaluated for a sttaight wne (2=0) The de-
pendence on the bending of the stiain tensor 1s of order L}
and can not be neglected For mtetaction Hamuiltonian (2 5)

PHYSICAL REVIEW B 66, 224106 (2002)

a) u b) u

Ut Ue

X Xo Xa X X, Xo Xa X

FIG 2 Two vibration modes 1n a bent wire (top) and the cor-
iesponding longitudinal displacements vy mn the straight wire (bot-
tom)

we need Vu m the global cooidinate system It 1s obtained
by diffeientiating the local cooidinates of u as well as the
local basis vectois A bent wiie can then be 1epiesented by a
straight wiie with an effective displacement u. 1elated to u
(m local coordinates) by

0 d
—Up=——u+OXu, 55
ox Uer Ix u u ( a)
d d d d
Elleﬁfzg)’;u, EueffZEZu (5 Sb)

The second teim on the 1ight-hand side of Eq (5 5a) ac-
counts for the centirfugal foice exerted by an election mov-
mg along the bent wire It rotates a tiansverse mode, with u
pomting m 1adial dnection, into a fictitious longitudimal
mode with u.y, of oider L|Q,| Note that m oider for
duqg , /0x to be nonzero, the displacement u needs to mduce
a stretching/comptession of the wune Only then 1s e,
ow/dx=23du,/dx+e, (QXU)=7duey, /dx#0

Figuie 2 shows two vibiation modes m a bent wne with
the conesponding longttudinal component u.g , of the effec
tive displacement To apply the formulas of Sec V A we
need u; = (X1), Ug=Her (xg), and ug=u.z (xg) The
first mode, Fig 2(a), has u; =ur=0 and uy7#0 It measwes
the amount of electton momentum that has been tiansfeired
to the scatteier (located at xg) The statistics of this process
1s equivalent to the chaige-tiansfer statistics [Eq (4 16)], as
mentioned at the end of the pievious subsection

The second mode, Fig 2(b), has u;=0, uz+#0, and «,
<up (assuming that the scatterer 18 located much closer to
the left 1ese1von than to the 1ight 1esetvon) It measuies the
amount of momentum tiansferied fiom the left to the ight
1eservon Its statistics 1eads

t
In F(&)= ﬁf de In{1+ (e 12— D[ fr—Cfr(1~f1)]

+T (e — D[ f (1= fr)+fr(1=F)]} (56)
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It cannot be ieduced to the chaige tansfer staustics [Eq
(4 16)] by a substitution of vaiables, and mn paiticulai does
not 1educe to a double Poissoman m the it '—0 (It
temamns multtnomial m this hmit) Compaimg the second
cumulant C® of momentum with the second cumulant
C?  of chaige [the terms of order &2 m Eqs (4 16) and

charge

(5 6)], we find (setting ug=1)

CO—(prle)’Cy

charge

%tp%kﬂ(l -r) 67
The difference vanishes at zero tempeiatute, in accordance
with Eq (5 3) It 1s independent of the voltage (as long as the
eneigy dependence of I' can be ignoied), so the difference 1s
an equilibrium piopeity

Equation (5 7) can be given a physical mterpietation by
gioupmg the elections to the 1ight of the scatteiing 1egion
mto n- 11ght movers and n. left moveis The momentum
transfer to the 11ght reseivon 1s propoitional to the sum n-
+n., while the chaige tiansfer 1s proportional to the differ-
ence n-~.—n., hence

2
c®— Ieig_Cglzl).rgeoc(((’1>+”<)2>>_<<(”>_n<)2>>

—4({(nsn <) —(ns)n ) (58)

We see that the diffeience measuies cortelations between left
and night-moving elections Such corielations aie due to
elections that aie backscattered with probability 1 —I' Equa-
tion (5 7) desciibes the vatiance i the numbet of such back-
scattered elections, given that elections in an eneigy 1ange
kgT leave the 11ght 1eseivon independently of each other

—10'< Ty (R+11,0) ¢Z,(R— ir,t')exp
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VI. EVALUATION IN TERMS OF THE KELDYSH
GREEN FUNCTION

A scattering appioach as m Sec IV 1s not possible if the
displacement u(r) vaues n the scatterng 1egion Time or-
dering then no longer 1educes to mput-output oidering, and
we need the Keldysh technique to make p1ogiess  Follow-
g the analogous formulation of the chaige counting
statistics,'® we wiite the generating function (3 4) as a smgle
exponential of an mtegial along the Keldysh time contow

f(§)=<Ttexp %fjotdt’f dr F.(r,t")

>, (6 1a)

1 .
Pe(r,0)= = 3 §Lrnpattap(r)pgiy(r.o)
(6 1b)

‘We have wiitten the force operator m second quantized foim,
as mm Eq (4 1), but do not assume that the election field
opeiator ¢+ (r,t)=y(r,t.) takes 1ts asymptotic foim 1
terms of incident and outgoing states 4

The generatmg function can be expiessed m terms of the
Keldysh Gieen function G

d InF _ 4 f dR (R
aZ n (6)—ﬁa=r o . t Uu,5(R)
2
a,aarﬂGao’(Rrr’t o1 sg)Irzo (6 2)

The Green function G,/ 1s a 2X2 matiix m the indices
o,0’ e{+,—} that assute the coriect time ordenng of the
operators It 1s defined by

%gf(:dﬂj dr’Fi(r’,t')D

GO‘U"(R’ryt:t,ag):

VII. APPLICATION TO A DIFFUSIVE CONDUCTOR

We apply the formalism of Sec VI to the example of
diffusive election tiansport thiough a fieely suspended dis-
ordered wne The semiclassical calculation of the transveise
momentum noise i this geometty was done m Ref 8, so we
can compate 1esults

For long detection tumes we may assume that the Gieen
function (6 3) depends only on the diffeience r=¢—¢" of the
time arguments A Fourter ttansform gives

G(rrr’(Ryl),‘g’g):J. drf (ZT@WZD ‘_[STG(r(r’(ersTag)
(71

We wiite p=|p|n and use the fact that m the semiclassical
limit the Gieen function 1s peaked as a function of the abso-

< T, exp

%gf(:dt’fdr'Fi(r’,t’)D

(63)

lute value |p| of the momentum Integiation over this vail-
able yields the semiclassical Gieen function®’

1
GUU/(R,H,8,§)=;I de' G, (Riny2me’,¢e,§)
(72)

‘We next make the diffusion appioximation, expanding the n
dependence m spherical harmonics

Goo(R,e,8)=G,(Re,&)+n,G ) (R.e,8)

—I—(na/zﬁ—%5@)0%””!(&8,5)
(73)
Substituting Eq (7 3) into Eq (6 2) we find
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2 0 F(&)=41Ep 2 def dRit ,5(R)

d¢

X| 3 0apGlro(R,e,6) + - Efgm,(ng)

(74)

where v= p,z-/2772v r 1s the density of states

The equation of motion for the semiclassical Gieen func-
tion 1n the diffusion approximation 1s detrved m the same
way as for the chaige statistics ' We find

21 G+[GD, Gl+éprpluggnangl m5,G1=0

(75)

”“aR

The length [ 1s the mean fiee path, assuming 1sotropic impu-
rity scattering The commutators [ , ] are taken with 1e-
spect to the Keldysh indices o,0’, and 75 15 the third Pauli
matrix 1 these indices The Gieen function satisfies the noi-
malization conditton G>=1 that 1s 1espected by differential
equation (7 5) The boundary conditions at the left and 1ight
ends of the wite are'®

_(1—2fL 2f )
L~ )

2=-2f; 2f; ~1
(76)

_(J—sz 2fR)

Fl2=-2fr 2fp—1

By projecting Eq (7 5) onto spherical harmonics we find
that, to leading order 1n I/L, the second harmonic G® de-
pends only on the zeroth haimonic G

£ 1
G%zil’ﬁ( Uap™3 Oaplt w) GO r3,GON1+0WL)?]

a7
Combining this relation with Eq (7 4) we see that the mo-

mentum statistics of a ttansverse mode, with u, =0, u,,
#0, follows ftom

d ¢
ZEFE)=g5tprlErv > > fdaJdRu

X(T3G(O)[T3 ’G(O)])(ro (7 8)

It remains to compute G® To calculate InF to order £2,
that 1s to calculate the vatlance C? of the foice noise, 1t 1s
sufficient to know G© for £=0 The solution to unper-
tutbed diffusion equation (7 5) 1s known,l0

1—-2f(R,g) 2f(R,e)

(0) =0)=
CTReL=0={, HiRe) 2/(Re)—1)

(79)

whete f(R,e)=f;(e)+(x/L)[ fr(e)—f.(e)] (The cooidr-
nate x 1uns along the wue, from x=0 to a=L ) We find
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16 L ,
C(Z)—*—t—pplEvaf dxde u;, (x)f(x,e)[1~f(x,e)],
15 0 )
(7 10)

with A the cross-sectional area of the wiie This 1s the same
tesult as m Ref §

Motre complicated netwoiks of diffusive wiues, including
tunnel barriers o1 point contacts, can be tieated 1n the same
way In such situations the unperturbed Gieen function
GO(R,e,£=0) can be determined using Nazatov’s cucuit
theory,?* and then substituted mto Eq (7 8)

VIII. CONCLUSION

We conclude by estimating the order of magmtude of the
cumulants of the displacement distribution P(Q) of a vibiat-
ing current-cartymg wire For an oscillator with a laige qual-
ity factor only the even oider cumulants (<Q2k>) are appre-
ciable, given m good approximation by

(<Q2k>)~—(Mwo) 2kghm FUAP@H), 81

t—»f

cf Egs (39) and (3 I1) The cumulants of transferied mo-
mentum A P have been calculated for a single-channel con-
ductor with a localized scatterer in Sec 'V At zeio tempeia-
tute one has

eV 2%
- 2%k
ﬁpF Mug+uy—2u0)* 2k

11m ((A P(z)”‘))-

t—o

In[ 1

+T(ef=1)]| =0, (82)

cf Eq (53) (We have 1emserted Planck’s constant A foi
clanty)

Combming Eqs (8 1) and (8 2) we see that m oirder of
magnitude ((Q*))=(eVQ/fwy)(pr/Mwy)** Inserting pa-
rameter values (following Ref 7) V=1 mV, Q=10
wo/2m=5 GHz, pp=2X10"%Ns, and M=10"% kg, we
estumate

<<Q2k>>1/2k% 104/2k>< 10—4 A (8 3)

Detectors with a 1074-A sensitivity have been proposed »
For a measuiement of highei-order cumulants one would
want cumulants of different oider to be of 1oughly the same
magnitude This can be achieved by choosing the number
eVQ/fiwg not too large For the paiametets chosen above,
(<Q4>)1/4/<<Q2>>1/2%0 1

The theory presented m this woirk 15 moie than a fiame-
work for the calculation of higher otder cumulants m the
momentum transfer statistics It also provides for a foimal-
18m to treat quantum effects n electtomechanical noise A
first application, to quantum size effects 1n a constriction, has
been 1ealized ?' Other applications, mcluding resonant tun-
neling, superconductivity, and mteraction effects, ate envis-
aged
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APPENDIX A: DERIVATION OF UNITARY
TRANSFORMATION (2.4)

We demonstiate that the opeiator U given m Eq (2 4) has
the desued propeity [Eq (2 3)] of elummating the phonon
displacement fiom the 10n potential By expanding the expo-
nential m Eq (2 4) we calculate the effect of U on a one-
election and one-phonon wave function 1n the position space
1epiesentation

U(r,q)=||J||"*¢{r—qu(r).q]

We prove Eq (2 3) by calculating matiix elements

(| UTVr—Qu(r)1U| )

(AD)

- [ e[ aalilyite-quir.a1

X V[r=qu(r)],[r—qu(r).q]
=Jd?f dq ! (r,9)V(0)y(r,q)
=(lVIgs) (A2)

The unitatity of U follows as the special case V=1
We now justify the replacement of p=UTpU with p and

A=UTAU by A m generatmg function (2 8), i the lumit of a
long detection time ¢ Since Q commutes with U, 1t 1s suffi-

cient to considet A=P [Then A=A(Q,P) n the more gen-
e1al case that A 1s a function of both @ and P | To fitst otdet
m the displacement one has

P=p—T1+0(u? (A3)

The difference between P and P 1s of the order of the total
momentum II mside the wue, which 1s ¢ independent n a
stattonaty state Since the expectation value (as well as
higher cumulants) of P imcieases lineatly with #, we can ne-

glect the difference between P and P for latge ¢

To justify the 1eplacement of p by p we note that the
effect of U on the mitial state 1s to shift the election coordi-
nates by the local phonon displacement [cf Eq (Al)] This
mutial shift has only a tiansient effect and can be neglected
for laige ¢
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APPENDIX B: EFFECTIVE MASS APPROXIMATION

We stait with Hamiltonian (2 5) with V=V, + V.5, In
the absence of any deformation of the periodic lattice one
has, 1n the effective mass appioximation,

1
—p*+ Vi (r)=——p"? (B1)

2m omt

The quasimomentum opetator p° 1s defined 1n terms of the
Bloch function g(r) by p*=—1gVg~! We seek a sumilai
apploximation to the same Hamiltonian 1n a distorted lattice,
assuming that u 1s sufficiently smooth that we can neglect
dervatives of the shea tensor u,; Hamultonian (2 5) (for
one election) then has the form

! 1
H= E{pa( 5a5—2Quaﬂ)pﬁ+ Vit Vimp— —AZPH+QaTa
(B2)

For small displacements Q the 1eal symmetiic matix X,z
=08,5—2Q0uqp 1s positive definite We can thetefoie factor-

1ze X=TT7, with T 1eal We change cooidmates to T
=T, and find

1 9 4 ~ ~ 1
H=—z———+V,(Tr) + V ;u,(Tr) - MPH +Qa'a

2m gr, or,
(B3)

We now make the assumption of a deformation indepen-
dent effective mass,'? ' that 1s to say we assume that the
Hamultonian with the distorted lattice potential Vi (Tr) 1
approximated as m Eq (B1) with distorted Bloch functions,
but the same effective mass m* Hence

2

1 - ~ 1
H=— - — | +V,mp(Tr)— — PII
2m* dr, g(Tr e M
+Qata (B4)

Transforming back to the onginal coordinates we anive at
the Hamiltonan

H=

1
p;(5aﬂ_2Quaﬁ)pé+ Vllllp— MPH_*_QQTG
(B5)

2m

given m Sec 1I
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