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Quantum theory of electromechanical noise and momentum transfer statistics
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A quantum-mechanical theory is developed for the statistics of momentum transfened to the lattice by
conduction electrons Results for the electiomechamcal noise powei in the semiclassical diffusive tiansport
regime agree with a lecent theoiy based on the Boltzmann-Langevin equation All moments of the transferred
momentum are calculated foi a single channel conductor with a locahzed scatterer, and compared with the
known statistics of transmitted Charge
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I. INTRODUCTION

Electncal current is the tiansfei of chaige fiom one end of
the conductoi to the other The statistics of this chaige tians-
fei was investigated by Levitov and Lesovik ' It is bmomial
for a single-channel conductoi at zeio tempeiature and
double Poissonian at finite tempeiatuie in the tunneling
legime~ The second cumulant, the noise powei, has been
measured m a vanety of Systems3 Ways of measunng the
thnd cumulant have been proposed,24 but not yet camed out

Electncal cunent also tiansfers momentum to the lattice
The second cumulant, the electiomechamcal noise powei,
determmes the mean-square displacement of an oscillatoi
thiough which a current is driven It has been studied
theoretically,5"8 and is expected to he withm the lange of
sensitivity of nanomechanical oscillatoi s 9 No theoiy exists
for highei ordei cumulants of the transfened momentum
(which would deteimine higher cumulants of the oscillatoi
displacement) It is the puipose of the piesent papei to pio-
vide such a theoiy

In the context of Charge tiansfer statistics theie exist two
approaches a fully quantum-mechanical appioach usmg
Keldysh Gieen functions110 and a semiclassical approach us-
ing the Boltzmann-Langevin equation u Heie we take the
formei appioach, to anive at a quantum theoiy of momen-
tum tiansfei statistics As a lest, we show that the second
moment calculated fiom Keldysh Gieen functions comcides
in the semiclassical hmit with the lesult obtamed from the
Boltzmann Langevm equation by Shytov, Levitov, and one
of the authois 8

A calculation of the complete cumulant geneiating func-
tion of tiansfeired momentum (01, equivalently, of oscillatoi
displacement) is piesented foi the case of a single-channel
conductoi with a locahzed scatteiei The geneiating function
in this case can be wntten entirely m terms of the tiansmis
sion piobability Γ of the scatteier In the moie geneial mul-
tichannel case one also needs a knowledge of the wave func
tions This is an essential diffeience fiom the chaige tiansfei
pioblem, which can be solved in teims of transmission ei-
genvalues foi any numbei of channels At zeio tempeiature
the momentum statistics is binomial, just äs foi the chaige
At finite tempeiatuie it is multmomial, even m the hmit Γ
—>0, diffeient fiom the double-Poissoman distnbution of
chaige

The outline of the papei is äs follows In See II we foi-

mulate the problem in a way that is suitable foi furthei analy
sis The key techmcal step in that section is a unitaiy tians-
foimation which ehmmates the dependence of the election-
phonon coupling Hamiltoman on the (unknown) scattenng
potential of the disordeied lattice The lesultmg coupling
Hamiltoman contams the electron momentum flow and the
phonon displacement In See II we use that Hamiltoman to
denve a geneial foimula foi the generating function of the
distnbution of momentum transfened to a phonon (äs well äs
the distnbution of phonon displacements) It is the analog of
the Levitov-Lesovik foimula foi the chaige- tiansfei
distnbution ' Foi a locahzed scatterei we can evaluate this
statistics in teims of the scattenng matiix We show how to
do this in See IV, and give an apphcation to a single-channel
conductoi m See V In Sees VI and VII we turn to the case
that the scattenng legion extends thioughout the conductoi
We follow the Keldysh appioach to denve a geneial formula
for the generating function, and check its vahdity by icdeiiv-
ing the result of Ref 8 We conclude in See VIII with an
ordei-of-magnitude estimate of highei-order cumulants of
the momentum-ti ansfei statistics

II. FORMULATION OF THE PROBLEM

The excitation of a phonon mode by conduction electrons
is descnbed by the Hamiltoman

(21)

wheie we have set h= J The phonon mode has anmhilation
opeiatoi a, fiequency ü, mass M, and displacement ßu(r),
wheie ö = (2Mil)~1/2(a + a t) is the amphtude opeiatoi
The electrons have posiüon r ;, momentum p,= — i d / d r , ,
and mass m Elections and phonons aie coupled thiough the
ιοη potential V(r) We assume a zeio magnetic field
Election-election mteiactions and the inteiactions of elec-
tions and phonons with an extemal electiic field have also
been omitted

We assume that elections and phonons aie uncoupled at
time zeio and measme moments of the obseivable A of the
phonons aftei they have been coupled to the elections foi a
time t The opeiatoi Α ( α , α ' ) could be the amphtude Qof the
phonon mode, its momentum P= — ι(ΜΩ/2)ι/2(α — α τ), 01
its eneigy Ωα** α The moment geneiating function foi A is
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m =0
(2.2)

The initial density matrix p = pepp is assumed to factorize
into an electron part and a phonon part.

We assume small displacements, so an obvious way to
proceed would be to linearize V(r— Qu) with respect to the
phonon amplitude Q. Such a procedure is coraplicated by the
fact that the resulting coupling -Qu· W of electrons and
phonons depends on the ion potential V. Because of momen-
tum conservation, it should be possible to find the momen-
tum transfeired by the electrons to the lattice without having
to consider explicitly the force —W. In the semiclassical
calculation of Ref. 8 that goal is achieved by the continuity
equation for the flow of electron momentum. The unitary
transforraation that we now discuss achieves the sarae pur-
pose in a fully quantum-mechanical framework.

What we need is a unitary operator U such that

t/1T[r-ßu(r)]i/=y(r). (2.3)

For constant u we have simply t/ = exp[—z'ßu-p]. More
generally, for space-dependent u, we need to specify the op-
erator ordering (denoted by colons : · · · : ) that all position
operators r stand to the left of the momentum operators p.
We also need to include a Jacobian determinant \\J\\ to en-
sure unitarity of U. As shown in Appendix A, the desired
operator is

t/=|kH1/2:e~''ÖU(r) 'P:> Jaß=Saß-Qdauß(r), (2.4)

with da=dldra. All this was for a single electronic degree
of freedom. The corresponding operator for many electrons
is £/ = n,.i/,·, where [/,· is given by Eq. (2.4) with r, p re-
placed by r,·, p,

Hamiltonian (2.1) transforms äs U^HU = H0 + H\nt, with

/

l .
Hmi=-QF-—PH + O(u2), (2.5b)

M

Here F is the driving force of the phonon mode,

l
= T~ Σ \.uaßtri)PiaPiß+Piaua

and Π is the total electron momentum,

(2.6)

(2.7)

weighted with the (dimensionless) mode profile u(r). We
have defined the shear tensor uaß~2(^auß~^^ßua)· The ab-
breviation H.c. indicates the Hermitian conjugate and a sum-
mation over repeated Cartesian indices a,β is implied.

The interaction Hamiltonian H\nt is now independent of
the ion potential, äs desired. In the first term — QF we rec-
ognize the momentum flux tensor, while the second term

-PHJM is an inertial contribution to the momentum transfer.
The inertial contribution is of relative order Ωλ/υ F (λ being
the wavelength of the phonon and VF the Fermi velocity of
the electrons) and typically «1. In what follows we will
neglect it. We also neglect the terms in H-ml of second and
higher order in u, which contribute to order \F/L to the
generating function (with L the length scale on which u var-
ies). These higher order interaction terms account for the
momentum uncertainty of an electron upon a position mea-
surement by the phonon.

If we apply the unitary transformation U to generating
function (2.2), we need to transform not only H but also A

—>f/1"A£/=Ä and p^U'*'pU = p, resulting in

jT( ξ) = (2.8)

In Appendix A we show that, quite generally, the distinction

between p, A and p, A is iiTelevant in the limit of a long
detection time t, and we will therefore ignore this distinction
in what follows.

If u is smooth on the scale of \F , so that gradients of uaß

can be neglected, one can apply the effective mass approxi-
mation to Hamiltonian (2.5). The ion potential V=Via t

+ yimp is decomposed into a contribution Vlat from the peri-
odic lattice and a contribution Vjmp from impurities and
boundaries that break the periodicity. The effects of Vlat can
be incorporated in an effective mass m* (assumed to be de-
formation independent12'13) and a corresponding quasimo-
mentum p*. The unperturbed Hamiltonian takes the usual
form

(2.9)

As shown in Appendix B, the force operator in H-mi is then
expressed through the flow of quasi-momentum,

l —,
P _, ΧΛ ψ

m* i "" "ß
(2.10)

whereas the inertial contribution is still given by Eq. (2.7) in
terms of the true electron momentum.

III. MOMENTUM TRANSFER STATISTICS

A. Generating function

A massive phonon mode absorbs the momentum that elec-
trons transfer to it without changing its displacement. We
may therefore define a statistics of momentum transfer to the
phonons without back action on the electrons by choosing
the observable A = P=-i(MCl/2)l/2(a-a^ in Eq. (2.2)
and taking the limit M—->co, jQ—^0 at fixed MCI. We assume
that the phonon mode is initially in the ground state, so that
app = 0.

We transform to the interaction picture by means of the
identity

,,H0t -iHl- Texp (3.1)
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wheie Tdenotes time ordenng (eaihei times to the nght of
latei times) of the time-dependent opeiatoi Hmt(t)
= e'H°'Hmte~'H°l In the massive phonon hmit we have
HIM(t) = —QF(t) with time-mdependent Q (since Q com-
mutes with H0 when Ω— >0) Equation (2 2) takes the foim

(32)

wheie K±(t) = i'0dt±F(t±) and T± denotes the Keldysh
time oideung times i_ to the left of times t+ , eaihei i_ to
the left of latei t_ , eaihei t+ to the nght of latei t +

Taking the expectation value of the phonon degiee of
fieedom we find

(K,

4ΜΩ
(33)

The factoi εχρ(£2ΜΩ/2) ongmates from the unceitamty
(ΜΩ)1'2 of the momentum of the phonon mode in the
giound state (vacuum fluctuations) It is a time-mdependent
additive contubution to the second cumulant, and we can
omit it foi long detection times The quadiatic teim
<*Κ~±/ΜΩ becomes small foi a small unceitamty (ΜΩ)~1/2

of the displacement in the giound state It descnbes a back
action of the phonon mode on the electrons that peisists in
fhe massive phonon hmit (A similai effect is known m the
context of chaige countmg statistics 14) This teim may be of
impoitance in some situations, but we will not considei it
heie, assummg that the election dynamics is insensitive to
the vacuum fluctuations of the phonon mode

With these simphfications we amve at a foimula foi the
momentum tiansfei statistics,

J~(£) = {T±exp[^K-(t)~\ & χ ρ [ ^ ξ Κ + ( t ) ] ) , (3 4)

that is of the same form äs the foimula foi chaige countmg
statistics due to Levitov and Lesovik '

•7rcharge(£) = ('7/± exp[j^/_(i)] e x p [ \ £ J + ( t ) ] ) (3 5)

The role of the integiated cunent J ( t ) = f'0dt'I(t') is taken
m oui problem by the integiated foice K (t)

B. Relation to displacement statistics

Cumulants {(ΔΡ(0)) of the momentum transfened m a
time i aie obtamed fiom the cumulant geneiatmg function
1η^(^) = Σπ{{ΔΡ(ί)"))ί'!/»' Cumulants ((Ρ(ω)")) of the
Founei tiansfoimed foice Ρ(ω) = $άί e"°'F(t) then follow
fiom the lelation AP(t)-f'0dt' F ( t ' ) The limit *—»°o of a
long detection time conesponds to the low-fiequency hmit

n >2ττδ Σ
ι=1

(36)

Cumulants of the Foiuiei tiansfoimed displacement β (ω)
of the oscillatoi follow fiom the phenomenological equation
of motion

l

M (

(37)

wheie Q is the quahty factoi of the oscillator Since the force
noise is white until fiequencies that are typically >Ω, one
has, in a good appioximation,

n
/ι \ n

= 2^4 Σ ω, Π ΑΚ)1ιπΐ7«ΔΡ(Οη»

(38)

Optical 01 magnetomotive detection of the vibiation, äs m
Refs 15-17, measmes the piobabihty distiibution P(Q) of
the displacement at any given time The cumulants of P(Q)
aie obtamed by a Founei tiansfoimation of Eq (3 8)

(39)

du>„

dtR(t)n (310)

Foi Ql> l the odd moments can be neglected, while the even
moments aie given by

(311)

C. Validity of the massive phonon approximation

These lesults weie obtamed in the massive phonon limit
Let us estimate how large M should be, for the simplest case
of the scatteimg of an election (mass m, velocity VF) by a

baiuei (mass M, velocity ß) Finite M corrections appeai
because a leflected electron transfeis to the bamei not only a

momentum 2pF but also an eneigy 8E—2pFQ This energy
tiansfei effectively changes the voltage drop ovei the baiuei
by an amount SV=SE/e, because leflected electrons suffei
this eneigy change wheieas tiansmitted electrons do not

A voltage diop SV creates a feedback loop The cunent is
changed by SI=GSV, and hence the foice on the baniei is
changed by 8F=(2pF/e)8I, hence the velocity of the bai-

nei is changed by δ(2 = ιωΚ(ω)δΡ = 4ιω(ρρ/ε)2Κ(ω)Οζ)
(m a Foiuiei lepiesentation) The feedback may be neglected

if SQ<iQ at the lesonance fiequency Ω (wheie it is stren-
gest) Since /?(Ω) = ;<2/ΜΩ2 the lequiiement foi negligible
feedback, and theiefoie foi the validity of the massive pho-
non appioximation, is
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C

FIG l Sketch of a freely suspended wire The matnces t,t' and
i,t' descnbe tiansmission and reflection by a locahzed scatterer
(shaded) A voltage V dnves a current through the conductor, excit-
mg a Vibration

G h EF m
(312)

The left-hand side of this mequality is the pioduct of thiee
laige ratios (the quahty factoi, the dimensionless conduc-
tance, and the latio of Feirru eneigy over phonon eneigy) and
one small latio (the election mass ovei the mass of the leso-
natoi) Foi typical paiametei values of a smgle-channel con-
ductoi one has Gh/e2<i, M=10~ 2 0kg, ίΙ/2ττ = 5 GHz,
and EF/h = Q5 1015 Hz, yieldmg a<lQ~* foi Q=l<f·

IV. EVALUATION IN TERMS OF THE
SCATTERING MATRIX

The Levitov-Lesovik formula [Eq (3 5)] foi the chaige
transfei statistics can be evaluated m teims of the scattenng
matnx of the conductoi,11S19 without an explicit knowledge
of the scattenng states This is possible because the cunent
opeiatoi depends only on the asymptotic foim of the scattei-
mg states, fai fiom the scattenng legion Foimula (3 4) for
the momentum-transfei statistics can be evaluated m a simi-
lai way, but only if the mode piofile u(r) is appioximately
constant ovei the scattenng legion

To this end, we fust wiite foice operator (2 6) in second
quantized form usmg a basis of scattenng states ψη e(r)

F ( t ) =
d^dε'

2-77

Μηη,(ε,ε') =

e'ie-*'>'cl(B)Mnn,(e,e')cn,(B'),

(4l)

l

m

(42)

The opeiatoi c„(e) annihilates an election in the nth scat-
teimg channel at eneigy ε The mode index n mns fiom l to
N (or fiom N+ l to 2N~) foi waves mcident fiom the left (01
fiom the nght) (See Fig l foi a diagiam of the geometiy,
and see Ref 20 foi the analogous lepiesentation of the cui-

ient opeiatoi) The commutatoi [[uaß,pa],pß] can be ne-
glected if u is smooth on the scale of the wavelength (hence
if X F /L<l l )

We assume that the deiivative uaß of the mode piofile
vamshes in the scattenng legion, so that foi the scattenng
states we may use the asymptotic foi m

/ / \ jLin (~.\ ι '̂  c l \ jout ι \ t Λ η\
ψηΛΓ) = ψ (Γ) ~r /, ^1}1η\ε)ψ (Γ) (4 j)

m

m teims of mcident and outgomg waves <^,',n°ut (noimahzed
to unit cunent) and the scattenng matnx S,„„(B) Since we
aie neglectmg the Loientz foice we may assume that φ°^ι

ε

= φ™ε The scattenng matnx has the block stiuctuie

r t'

t r'
(44)

with NXN tiansmission and leflection matuces t, t', and
ι ,r' These matuces aie iclated by umtanty (5 = 5^) and
possibly also by time-ieveisal symmeüy (S = ST)

The opeiatoi pa
uaßPβ W1H couple only weakly the mci-

dent to the outgomg waves, piovided u is smooth on the
scale of \F, and we neglect this couphng The matnx M then
sepaiates mto mcident and outgomg paits

Μ(ε,ε') = Μ ι η(ε )ε') + 51"(ε)Μοι"(ε,ε')5(ε') (45)

The matiices M'n and Mout aie defined äs m Eq (4 2) with ψ
leplaced by φ"1 and φοα\ tespectively (They aie Heimitian
and related by Mout=Mmt ) These two matiices vaiy with
energy on the scale of the Feimi eneigy Er, while the scat-
termg matnx S has a much stionger eneigy dependence (on
the scale of the Thouless eneigy) We may theiefoie leplace
M ln, Mout by then value at ε = ε' =EF and assume that the
energy dependence of M is given entnely by the scattenng
rnati ix

The foice opeiatoi can similaily be sepaiated into F
= Fin+Foat, wheie F"1 and Fout aie defined äs m Eq (4 1)
with the matnx M leplaced by Mm and 5tMout5, icspec-
tively We now pioceed m the same way äs in Ref 19 foi the
cunent opeiatoi, by notmg that the analyticity of S(e) in the
uppei half of the complex plane implies simple commutation
lelations

[Fm(t),F"\t')] = 0, [FOM(t),Fmt(t')] = 0, Vt,t',

[Fin(t),F°ul(t')] = 0 if t>t'
(46)

It follows that the Keldysh time oidenng T± of the foice
opeiatoi s is the same äs the so-called mput-output oidenng,
defined by moving the opeiatoi s Fin(t_) to the left and
F,n(i + ) to theiightof all othei opeiatoi s—inespectiveof the
value of the time aiguments The leason foi piefenmg mput-
output oidenng ovei time oidenng is that Fouiiei tiansioi-
mation fiom time to eneigy commutes with the foimei 01-
denng but not with the lattei

In the hmit ;^°o diffeient eneigies become uncoupled,
and the cumulant geneiating function takes the simple foi m
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= -- dB , (4 7)

entnely analogous to the mput-output ordered foimula for
Charge transfei I9 The Fomiei tiansfoimed force is defined äs

= c t(e)M ln(e,E)c(s), (48a)

(48b)

(The opeiators c„ have been collected in a vectoi c )
The matiices M"101" are block diagonal,

ML 0
0 MR

(49)

but the NXN matiices MLR aie in geneial not diagonal
themselves They take a simple form foi a longitudmal pho-
non mode, when u is a function of χ in the y. duection (along
the conductor), so that uaß(r) = δαλδβχιι'(χ) The commu-
tator [[H',PA],PA] does not contubute because </>"10ut is an
eigenstate of px (with eigenvalue p]"= -p™l=p„) Hence
for a longitudmal Vibration one has

(410a)

(410b)

The value of u(x) in the scattenng icgion is denoted by u0,
while UL and M« denote the values at the left and nght ends
of the conductoi The more complex Situation of a tiansveise
phonon mode, when the matiices M L R aie no longei diago-
nal, is treated in Ref 21

We aie now leady to calculate the expectation value m
Eq (47) We assume that the incident waves ongmate fiom
reseivoirs in theimal equihbnum at temperatuie T, with a
voltage diffeience 1/between the left and nght leseivon The
Fermi function in the left (nght) leseivon is fL (fR) We
collect the Feimi functions in a diagonal matnx/and wnte

f=
/L 0

0 fR

(411)

All othei expectation values of c and c^ vanish We evaluate
Eq (4 7) with help of the detei mmantal identity

Π exp(c1A,c) = 1-/+/Π (412)

valid foi an arbitiaiy sei of matiices A , , and the identity

exp(S^AS) = SieAS, (413)

valid for umtaiy S The lesult is

t

2^

At zeio temperatuie fL=e(EF + eV—s) and fR=9(EF

— ε) The eneigy lange ε<ΕΡ, where /£,=//?= l, contnb-
utes only to the first moment, while the eneigy ränge EF

<B<EF+eV, wheie/L=l and /« = 0, contnbutes to all
moments For small voltages we may neglect the eneigy de-
pendence of 5(ε) in that ränge Usmg the block stiuctuie
[Eqs (4 4) and (4 9)], of S, M'n out the geneiatmg function foi
the second and highei cumulants takes the foi m

eVt
(415)

[By Ο(ξ) we mean terms linear in ξ ] This deteimmant can-
not be simplified fuithei without knowledge of S That is a
major complication lelative to the analogous foimula foi the
chaige-transfer statistics,1 which can be cast entnely m teims
of the tiansmission eigenvalues Γ,, (eigenvalues of tt^)

(416)

In the case of momentum tiansfei, eigenvalues and eigenvec-
tois both play a lole

V. APPLICATION TO A ONE-DIMENSIONAL CONDUCTOR

A. Straight wire

Fuithei simplification of Eqs (4 14) and (4 15) is possible
if the conductoi is so nanow that it supports only a smgle
piopagating mode to the left and nght of the scattenng le-
gion (N=l) The scattenng matnx then consists of scalai
transmission and leflection coefficients t,t' and ;,;' (lelated
to each other by umtaiity) We considei the case of a longi-
tudmal vibiation with

0

0
(51)

[cf Eq (4 10)] Because of umtanty the result depends only
on the tiansmission probability Γ = | ί 2 = | ί ' | 2 = 1 — r | 2 =l
~>'\2,

= - ds

(52)

At zeio tempeiature this simplifies furthei to

eVt

(53)

(414) The zeio-tempeiatme statistics [Eq (5 3)] is binomial,
where we have also used that the two matiices Mm and/ just äs foi the chaige [The geneiatmg function ^Λη&ΐ(ξ) at
commute T=0 is obtamed fiom Eq (5 3) aftei Substitution of p f ( u R

224106-5



M KINDERMANN AND C W J BEENAKKER PHYSICAL REVIEW B 66, 224106 (2002)

+ UL— 2w0) by e, cf Eq (4 16) ] At fimte temperatuies one
has the multmomial statistics [Eq (5 2)], made up of sto-
chastically mdependent elementaiy piocesses with moie than
two possible outcomes The elementaiy piocesses may be
chaiactenzed by the numbeis (n^,n£) e{0,l} of electrons
mcident on the scatterei from the left, nght and the numbers
(«out -"out) ei0·!} of outgomg elections to the left, iight The
non-vanishmg piobabihties i*[(n^,«^)— >(«out> n out)] °f
scattenng events evaluate to

a) b)

(54)

These piobabihties appeai m generatmg function (5 3), mul-
tiplied by exponentials of ξ times the amount of tiansfened
momentan

A longitudmal vibiation of a stiaight wire clamped at both
ends would conespond to uL=uR=:0 and u0=£0 In that
special case Eq (5 2) is equivalent to Eq (4 16) foi
•^chaige(i) undei the Substitution Γ— >1 — Γ, 2pFu0->e In
this case the multmomial statistics becomes a double-
Poissoman in the hmit Γ— >0, conespondmg to two mdepen-
dent Poisson piocesses ongmating fiom the left and nght
leseivons 2 A longitudmal Vibration is difficult to obseive, in
contiast to a transveise vibiation which can be obseived
optically15 16 01 magnetomotively n However, the dnect ex-
citation of a transverse mode is not possible in a smgle-
channel conductoi, whüe m a multichannel conductoi (width
W) it is smaller than the excitation of a longitudmal mode by
a factor (W/L) 221 So it would be desirable to find a way of
couplmg longitudmal electron motion to tiansveise vibiation
modes In the followmg subsection we discuss how this can
be achieved by bendmg the wue

B. Bent wire

The bendmg of the wire is desci ibed äs explamed m Ref
22, by means of a vectoi f l ( s ) that lotates the local cooidi
nate System ex(s), ey(j), and e,(s) äs one moves an infini-
tesimal distance ds along the wue Sea = £lXeaSs The lo-
cal cooidmate χ is along the wue and y,z aie peipendicular
to it The component ίί|| of il along the wne descubes a
toision (with |Ω||| the toision angle pei umt length), while
the peipendiculai component fl± descubes the bendmg (with
|üjj~' the radms of cuivatuie)

The momentum opeiatois and wave functions, wntten in
local cooidmates, depend on the bendmg by teims of oidei
XF|il|, which we assume to be ^1 These quantities may
theiefoie be evaluated foi a stiaight wne (il=0) The de-
pendence on the bendmg of the stiam tensoi is of oidei L|il|
and can not be neglected Foi inteiaction Hamiltoman (2 5)

Jeff

FIG 2 Two Vibration modes m a bent wire (top) and the cor-
lesponding longitudmal displacements uett in the straighl wire (bot-
tom)

we need V u in the global cooidmate System It is obtamed
by diffeientiatmg the local cooidmates of u äs well äs the
local basis vectois A bent wne can then be lepiesented by a
stiaight wne with an effective displacement ueff lelated to u
(in local cooidmates) by

d d
— Upff=—u+ilXu,
dx ett dx

(55a)

The second teim on the nght-hand side of Eq (5 5a) ac-
counts foi the centnfugal foice exerted by an election mov-
mg along the bent wire It rotates a tiansveise mode, with u
pomtmg m ladial dnection, mto a fictitious longitudmal
mode with uefix of oidei L|fl± Note that in oidei foi
dUeffi/dx to be nonzero, the displacement u needs to induce
a stretchmg/compiession of the wne Only then is ex

Figuie 2 shows two vibiation modes in a bent wne with
the conespondmg longitudmal component Meff A of the effec
tive displacement To apply the foimulas of See VA we
needH L =H e f f v (x L ) , MÄ = M e f f x (x Ä ) , and u0 = ueffv(*0) The
fnst mode, Fig 2(a), has uL=uR = 0 and u0J=0 It measmes
the amount of election momentum that has been tiansfened
to the scatteiei (located at x0) The statistics of this piocess
is equivalent to the chaige-tiansfei statistics [Eq (4 16)], äs
mentioned at the end of the pievious subsection

The second mode, Fig 2(b), has ML = 0, uR¥=0, and MO

<?«/? (assummg that the scatteiei is located much ciosei to
the left leseivon than to the nght leseivon) It measuies the
amount of momentum tiansfened fiom the left to the nght
leseivon Its statistics leads

(56)
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It cannot be leduced to the chaige tiansfei statistics [Eq
(4 16)] by a Substitution of vanables, and m paiticulai does
not icduce to a double Poissoman in the hmit Γ—>0 (It
lemams multmomial m this hmit) Compaiing the second
cumulant C(2) of momentum with the second cumulant
^-Charge °f chaige [the teims of oidei ξ2 in Eqs (4 16) and
(5 6)], we find (settmg HÄ=!)

VI. EVALUATION IN TERMS OF THE KELDYSH
GREEN FUNCTION

A scatteimg appioach äs in See IV is not possible if the
displacement u(r) vanes m the scatteimg legion Time or-
deiing then no longei leduces to mput-output oidei mg, and
we need the Keldysh technique to make piogiess " Follow-
mg the analogous foimulation of the chaige countmg
statistics,10 we wnte the geneiatmg function (3 4) äs a single

= T±exp ££ dt' drF±(r,t") , (61 a)

C ( 2 )-(pF le) 2C (^& s= — tp2
FkBT(l -Γ) (5 7) exponential of an mtegial along the Keldysh time contoui

The diffeience vamshes at zeio tempeiatuie, in accoidance
with Eq (5 3) It is independent of the voltage (äs long äs the
eneigy dependence of Γ can be ignoied), so the diffeience is
an equilibimm piopeity

Equation (5 7) can be given a physical mterpietation by
gioupmg the elections to the nght of the scatteimg legion (6 Ib)

mto n> nght moveis and «< left moveis The momentum We have wntten the force opeiatoi m second quantized foim,
tiansfei to the nght reseivon is piopoitional to the sum n> as m Eq (4 ̂  but do not assume that the election field
+ n<, while the chaige tiansfei is piopoitional to the diffei- opeiatoi <A±(r,0=iA(r,i±) takes its asymptotic foim m
ence n> —n< , hence teims of incident and outgoing states 24

2 The geneiatmg function can be expiessed in teims of the
^2\\ Keldysh Gieen function G

We see that the diffeience measuies conelations between left
and iight-movmg elections Such conelations aie due to
elections that aie backscatteied with piobabihty l — Γ Equa-
tion (5 7) descnbes the vanance in the numbei of such back-
scatteied elections, given that elections in an eneigy lange
kBT leave the nght leseivou mdependently of each othei

The Gieen function Οσσι is a 2X2 matnx in the mdices
σ,σ' e{ + ,—} that assuie the conect time oideiing of the
opeiators It is defined by

\ξ\ dt' dr'F±(r',t')
o

± exp

(63)

VII. APPLICATION TO A DIFFUSIVE CONDUCTOR

We apply the foimalism of See VI to the example of
diffusive election tianspoit thiough a fieely suspended dis-
oideied wue The semiclassical calculation of the transveise
momentum noise in this geometiy was done in Ref 8, so we
can compaie lesults

Foi long detection times we may assume that the Gieen
function (6 3) depends only on the diffeience r=t — t' of the
time aiguments AFounei tiansfoim gives

= dr

(71)

We wnle p=|p|n and use the fact that in the semiclassical
hmit the Gieen function is peaked äs a function of the abso-

lute value |p| of the momentum Integiation ovei this vaii-
able yields the semiclassical Gieen function23

(72)

We next make the diffusion appioximation, expanding the n
dependence m spheiical haimomcs

(73)

Substitutmg Eq (7 3) mto Eq (6 2) we find
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i

—
ο ς

X

σ d e ] dRuaß(R)

15

(74)

where ν=ρ~Γ/2π-υρ is the density of states
The equation of motion for the semiclassical Gieen func-

tion in the diffusion approximation is denved in the same
way äs for the chaige statistics 10 We find

(710)

with A the cross-sectional area of the wne This is the same
lesult äs in Ref 8

Moie comphcated netwoiks of diffusive wnes, includmg
tunnel bamers 01 point contacts, can be tieated in the same
way In such situations the unpeiturbed Gieen function
G (0 )(R,e,£=0) can be determmed usmg Nazaiov's cncuit
theoiy,24 and then substituted mto Eq (7 8)

(75)

The length l is the mean fiee path, assuming Isotropie impu-
nty scattenng The commutators [ , ] are taken with ic-
spect to the Keldysh mdices σ,σ', and τ3 is the third Pauh
matnx m these mdices The Gieen function satisfies the noi-
mahzation condition G 2 =l that is lespected by diffeiential
equation (7 5) The boundary conditions at the left and nght
ends of the wne are10

1-2Λ 2fL

2-2fL 2/Λ-1

l-2fR 2fR

2-2fR 2fR~l

(76)

By projecting Eq (7 5) onto sphencal harmonics we find
that, to leadmg order in U L, the second harmonic G(2) de-
pends only on the zeroth haimomc G(0)

(77)

Combining this relation with Eq (7 4) we see that the mo-
mentum statisücs of a tiansverse mode, with «„ = 0, κλ>

Φϋ, follows fiom

σ α β
de dRU

2
aß

(78)

It remams to compute G(0) To calculate InJ"to ordei ξ2,
that is to calculate the vanance C(2:> of the foice noise, it is
sufficient to know G(0) foi ^=0 The solution to unper-
tuibed diffusion equation (7 5) is known,10

2/(R,fi)

2-2/(R,s)
(79)

x/L)[fR(e)—fL(e)] (The cooidi-
nate χ mns along the wne, from x = 0 to x — L ) We find

VIII. CONCLUSION

We conclude by estimatmg the ordei of magmtude of the
cumulants of the displacement distnbution P(ß) of a vibiat-
mg current-canymg wire Foi an oscillatoi with a laige qual-
ity factor only the even oidei cumulants ((Q2k)) are appre-
ciable, given m good approximation by

cf Eqs (3 9) and (3 11) The cumulants of tiansfened mo-
mentum Δ T5 have been calculated foi a smgle-channel con-
ductoi with a localized scatteiei in See V At zeio tempeia-
tuie one has

eV j2k

cf Eq (5 3) (We have lemserted Planck's constant h foi
clanty)

Combmmg Eqs (8 1) and (8 2) we see that m oidei of
magmtude ((Q2k))—(eVQ/fi(t>Q)(pF/M(i>0)

2k Inseiting pa-
rametei values (following Ref 7) V = l mV, Q=103,
ω0/2τΓ=5 GHz, pF=2X 10~24 Ns, and M=l(T 2 0kg, we
estimate

(83)

Detectois with a 10 4-Ä sensitivity have been pioposed25

Foi a measuiement of highei-oidei cumulants one would
want cumulants of different oider to be of loughly the same
magmtude This can be achieved by choosmg the numbei
eVQIha)^ not too large For the paiameteis chosen above,
<(ß4)>1/4/<{ß2})1/2-o i

The theoiy presented in this woik is moie than a fiame-
woik foi the calculation of highei oidei cumulants in the
momentum tiansfer statistics It also piovides foi a foimal-
ism to tieat quantum effects m electiomechanical noise A
fiist application, to quantum size effects in a constnction, has
been leahzed 21 Othei apphcations, includmg icsonant tun-
nehng, supeiconductivity, and mteiaction effects, aie envis-
aged
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APPENDIX A: DERIVATION OF UNITARY
TRANSFORMATION (2.4)

We demonstiate that the opeiatoi U given in Eq (2 4) has
the desned piopeity [Eq (2 3)] of eliminating the phonon
displacement fiom the ιοη potential By expandmg the expo-
nential in Eq (2 4) we calculate the effect of U on a one-
election and one-phonon wave function in the position space
lepiesentation

'φ[ΐ— qu(r),q] (AI)

We piove Eq (2 3) by calculatmg matnx elements

= 1 drj dq\\J\W[r-qu(r),ql

XV[r-qu(r)]if<2[r-qu(r),q]

= dr

(A2)={φι\ν\Φ2)
The umtat ity of U follows äs the special case V=l

We now justify the leplacement of p= U^pU with p and
A = U^A U by A in geneiating function (2 8), in the hmit of a
long detectton time t Smce Q commutes with (7, it is suffi-
cient to considei A = P [Then Ä = A(Q,P) in the moie gen-
eial case that A is a function of both Q and P ] To fiist oidei
m the displacement one has

The diffeience between P and P is of the ordei of the total
momentum Π mside the wne, which is t independent in a
stationaiy state Smce the expectation value (äs well äs
highei cumulants) of P incieases hneatly with ?, we can ne-
glect the diffeience between P and P foi laige t

To justify the leplacement of p by p we note that the
effect of U on the initial state is to shift the election cooidi-
nates by the local phonon displacement [cf Eq (AI)] This
initial shift has only a tiansient effect and can be neglected
foi laige t

PHYSICAL REVIEW B 66, 224106 (2002)

APPENDIX B: EFFECTIVE MASS APPROXIMATION

We stait with Hamiltoman (25) with V= V1[lt+Vimp In
the absence of any defoimation of the penodic lattice one
has, in the effective mass appioximation,

(Bl)

The quasimomentum opeiatoi p r is defined in terms of the
Bloch function g(r) by p·1 = — igVg~l We seek a similai
appioximation to the same Hamiltoman in a distoited lattice,
assummg that u is sufficiently smooth that we can neglect
denvatives of the sheai tensoi uaß Hamiltoman (25) (foi
one election) then has the foim

(B2)

Foi small displacements Q the leal symmetnc matnx Xaß
~ 8aß~1-Quaß 1S positive defimte We can theiefoie factoi-
ize X=TTr, with T leal We change cooidmates to r
= T~'r, and find

(B3)

We now make the assumption of a defoimation indepen-
dent effective mass,12 n that is to say we assume that the
Hamiltoman with the distoited lattice potential Vlat(Tr) is
appioximated äs m Eq (Bl) with distoited Bloch functions,
but the same effective mass m* Hence

//=-
1

2m

_ d l
g(Tr)- + V imp(Tr)-—ΡΠ

M

(B4)

Tiansformmg back to the onginal coordmates we anive at
the Hamiltoman

H=·
2m

given in See II
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