Quantum theory of electromechanical noise and momentum transfer statistics

M Kındermann and C W J Beenakkeı
Instituut Lorentz Universtteit Leiden PO Box 95062300 RA Leiden The Netherlands

(Received 21 June 2002, published 10 December 2002)

Abstract

A quantum-mechanical theory is developed for the statistics of momentum transfered to the lattice by conduction electrons Results for the electiomechanical noise powei in the semiclassical diffusive taansport regime agree with a recent theory based on the Boltzmann-Langevin equation All moments of the transferred momentum are calculated for a single channel conductor with a localized scatterer, and compared with the known statistics of transmitted charge

DOI 10 1103/PhysRevB 66224106
PACS number(s) $8585+\mathrm{J}, 7323-\mathrm{b}, 7350 \mathrm{Td}, 7765-\mathrm{J}$

I. INTRODUCTION

Electucal current is the thansfer of chatge from one end of the conductor to the other The statistics of this charge tiansfei was investigated by Levitov and Lesovik ${ }^{1}$ It is binomial for a single-channel conductor at zero temperature and double Poissonan at finite temperature in the tunneling egime 2 The second cumulant, the norse power, has been measured in a vanety of systems ${ }^{3}$ Ways of measunng the thnd cumulant have been proposed, ${ }^{24}$ but not yet canned out

Electucal curent also tuansfers momentum to the lattice The second cumulant, the electiomechanical noise power, determines the mean-square displacement of an oscillator though which a current is driven It has been studied theoretically, ${ }^{5-8}$ and is expected to he within the range of sensitivity of nanomechanical oscillators ${ }^{9}$ No theory exists for higher ordeı cumulants of the transferied momentum (which would determine higher cumulants of the oscillator displacement) It is the purpose of the present paper to piovide such a theory

In the context of charge thansfer statistics there exist two approaches a fully quantum-mechanical appioach using Keldysh Gieen functions ${ }^{110}$ and a semiclassical approach using the Boltzmann-Langevin equation ${ }^{11}$ Here we take the former approach, to anıve at a quantum theory of momentum tuansfer statustics As a test, we show that the second moment calculated from Keldysh Green functions comerides in the semiclassical limit with the result obtaned from the Boltzmann Langevin equation by Shytov, Levitov, and one of the authors ${ }^{8}$

A calculation of the complete cumulant generating function of tiansferred momentum (0 , equivalently, of oscillator displacement) is presented for the case of a single-channel conductor with a localized scatterer The generating function in this case can be witten entirely in terms of the tuansmis sion probability Γ of the scatterer In the more general multichannel case one also needs a knowledge of the wave func tions This is an essential difference from the charge tiansfer problem, which can be solved in teims of transmission eigenvalues for any number of channels At zeto temperature the momentum statistics is binomial, just as for the charge At finte temperature it is multinomal, even in the limit Γ $\rightarrow 0$, different from the double-Porssonan distribution of change

The outline of the paper is as follows In Sec II we for-
mulate the problem in a way that is surtable for further analy sis The key technical step in that section is a unitaty tiansformation which eliminates the dependence of the electionphonon coupling Hamiltonian on the (unknown) scattering potential of the disordered lattice The resulting coupling Hamiltoman contains the electron momentum flow and the phonon displacement In Sec II we use that Hamiltonian to derive a general formula for the generating function of the distribution of momentum transferied to a phonon (as well as the distribution of phonon displacements) It is the analog of the Levitov-Lesovik formula for the charge-tıansfer distribution ${ }^{1}$ For a localized scatterer we can evaluate this statistics in teims of the scattering matuix We show how to do this in Sec IV, and give an application to a single-channel conductor in Sec V In Secs VI and VII we turn to the case that the scattering region extends throughout the conductor We follow the Keldysh appioach to derive a general formula for the generating function, and check its validity by rederiving the result of Ref 8 We conclude in Sec VIII with an order-of-magnitude estimate of highei-order cumulants of the momentum-tıansfer statistics

II. FORMULATION OF THE PROBLEM

The excitation of a phonon mode by conduction electrons is described by the Hamiltoman

$$
\begin{equation*}
H=\Omega a^{\dagger} a+\sum_{t} \mathbf{p}_{t}^{2} / 2 m+\sum_{t} V\left[\mathbf{r}_{t}-Q \mathbf{u}\left(\mathbf{r}_{t}\right)\right] \tag{21}
\end{equation*}
$$

whete we have set $\hbar=1$ The phonon mode has annihilation operator a, fiequency Ω, mass M, and displacement $Q \mathbf{u}(\mathbf{r})$, where $Q=(2 M \Omega)^{-1 / 2}\left(a+a^{\dagger}\right)$ is the amplitude operator The electrons have position \mathbf{r}_{i}, momentum $\mathbf{p}_{i}=-\imath \partial / \partial \mathbf{r}_{i}$, and mass m Elections and phonons are coupled though the ion potential $V(\mathbf{r})$ We assume a zeıo magnetic field Election-election interactions and the interactions of elections and phonons with an extenal electuc field have also been omitted

We assume that elections and phonons ane uncoupled at tume zero and measure moments of the observable A of the phonons after they have been coupled to the elections for a tume t The operator $A\left(a, a^{\dagger}\right)$ could be the amplitude Q of the phonon mode, its momentum $P=-t(M \Omega / 2)^{1 / 2}\left(a-a^{\top}\right)$, or its energy $\Omega a^{\dagger} a$ The moment generating function for A is

$$
\begin{equation*}
\mathcal{F}(\xi)=\sum_{m=0}^{\infty} \frac{\xi^{m}}{m!}\left\langle A^{m}(t)\right\rangle=\operatorname{Tr} e^{\xi A} e^{-i H t} \rho e^{i H t} \tag{2.2}
\end{equation*}
$$

The initial density matrix $\rho=\rho_{e} \rho_{p}$ is assumed to factorize into an electron part and a phonon part.

We assume small displacements, so an obvious way to proceed would be to linearize $V(\mathbf{r}-Q \mathbf{u})$ with respect to the phonon amplitude Q. Such a procedure is complicated by the fact that the resulting coupling -Qu• ∇V of electrons and phonons depends on the ion potential V. Because of momentum conservation, it should be possible to find the momentum transferred by the electrons to the lattice without having to consider explicitly the force $-\nabla V$. In the semiclassical calculation of Ref. 8 that goal is achieved by the continuity equation for the flow of electron momentum. The unitary transformation that we now discuss achieves the same purpose in a fully quantum-mechanical framework.

What we need is a unitary operator U such that

$$
\begin{equation*}
U^{\dagger} V[\mathbf{r}-Q \mathbf{u}(\mathbf{r})] U=V(\mathbf{r}) \tag{2.3}
\end{equation*}
$$

For constant \mathbf{u} we have simply $U=\exp [-i Q \mathbf{u} \cdot \mathbf{p}]$. More generally, for space-dependent \mathbf{u}, we need to specify the operator ordering (denoted by colons : $\cdot \cdot:$) that all position operators \mathbf{r} stand to the left of the momentum operators \mathbf{p}. We also need to include a Jacobian determinant $\|J\|$ to ensure unitarity of U. As shown in Appendix A, the desired operator is

$$
\begin{equation*}
U=\|J\|^{1 / 2}: e^{-i Q \mathbf{u}(r) \cdot \mathbf{p}}:, \quad J_{\alpha \beta}=\delta_{\alpha \beta}-Q \partial_{\alpha} u_{\beta}(\mathbf{r}), \tag{2.4}
\end{equation*}
$$

with $\partial_{\alpha} \equiv \partial / \partial r_{\alpha}$. All this was for a single electronic degree of freedom. The corresponding operator for many electrons is $U=\Pi_{i} U_{i}$, where U_{i} is given by Eq. (2.4) with \mathbf{r}, p replaced by $\mathbf{r}_{i}, \mathbf{p}_{i}$.

Hamiltonian (2.1) transforms as $U^{\dagger} H U=H_{0}+H_{\text {int }}$, with

$$
\begin{gather*}
H_{0}=\Omega a^{\dagger} a+\sum_{i}\left[\mathbf{p}_{i}^{2} / 2 m+V\left(\mathbf{r}_{i}\right)\right] \tag{2.5a}\\
H_{\mathrm{imt}}=-Q F-\frac{1}{M} P \Pi+\mathcal{O}\left(\mathbf{u}^{2}\right) \tag{2.5b}
\end{gather*}
$$

Here F is the driving force of the phonon mode,

$$
\begin{equation*}
F=\frac{1}{4 m} \sum_{i}\left[u_{\alpha \beta}\left(\mathbf{r}_{i}\right) p_{i \alpha} p_{i \beta}+p_{i \alpha} u_{\alpha \beta}\left(\mathbf{r}_{i}\right) p_{i \beta}\right]+\text { H.c }, \tag{2.6}
\end{equation*}
$$

and Π is the total electron momentum,

$$
\begin{equation*}
\Pi=\frac{1}{2} \sum_{i} \mathbf{u}\left(\mathbf{r}_{i}\right) \cdot \mathbf{p}_{i}+\text { H.c. } \tag{2.7}
\end{equation*}
$$

weighted with the (dimensionless) mode profile $\mathbf{u}(\mathbf{r})$. We have defined the shear tensor $u_{\alpha \beta}=\frac{1}{2}\left(\partial_{\alpha} u_{\beta}+\partial_{\beta} u_{\alpha}\right)$. The abbreviation H.c. indicates the Hermitian conjugate and a summation over repeated Cartesian indices α, β is implied.

The interaction Hamiltonian H_{int} is now independent of the ion potential, as desired. In the first term $-Q F$ we recognize the momentum flux tensor, while the second term
$-P \Pi / M$ is an inertial contribution to the momentum transfer. The inertial contribution is of relative order $\Omega \lambda / v_{F}$ (λ being the wavelength of the phonon and v_{F} the Fermi velocity of the electrons) and typically $\preccurlyeq 1$. In what follows we will neglect it. We also neglect the terms in $H_{\text {int }}$ of second and higher order in \mathbf{u}, which contribute to order λ_{F} / L to the generating function (with L the length scale on which \mathbf{u} varies). These higher order interaction terms account for the momentum uncertainty of an electron upon a position measurement by the phonon.

If we apply the unitary transformation U to generating function (2.2), we need to transform not only H but also A $\rightarrow U^{\dagger} A U=\widetilde{A}$ and $\rho \rightarrow U^{\dagger} \rho U=\tilde{\rho}$, resulting in

$$
\begin{equation*}
\mathcal{F}(\xi)=\operatorname{Tr} e^{\xi \tilde{A}} e^{-i t\left(H_{0}+H_{\mathrm{int}}\right)} \tilde{\rho} e^{i t\left(H_{0}+H_{\mathrm{int}}\right)} \tag{2.8}
\end{equation*}
$$

In Appendix A we show that, quite generally, the distinction between ρ, A and $\tilde{\rho}, \widetilde{A}$ is irrelevant in the limit of a long detection time t, and we will therefore ignore this distinction in what follows.

If \mathbf{u} is smooth on the scale of λ_{F}, so that gradients of $u_{\alpha \beta}$ can be neglected, one can apply the effective mass approximation to Hamiltonian (2.5). The ion potential $V=V_{\text {lat }}$ $+V_{\text {imp }}$ is decomposed into a contribution $V_{\text {lat }}$ from the periodic lattice and a contribution $V_{\text {imp }}$ from impurities and boundaries that break the periodicity. The effects of $V_{\text {lat }}$ can be incorporated in an effective mass m^{*} (assumed to be deformation independent ${ }^{12,13}$) and a corresponding quasimomentum p^{*}. The unperturbed Hamiltonian takes the usual form

$$
\begin{equation*}
H_{0}=\Omega a^{\dagger} a+\sum_{i}\left[\mathbf{p}_{i}^{* 2} / 2 m^{*}+V_{\mathrm{imp}}\left(\mathbf{r}_{i}\right)\right] \tag{2.9}
\end{equation*}
$$

As shown in Appendix B, the force operator in H_{int} is then expressed through the flow of quasi-momentum,

$$
\begin{equation*}
F=\frac{1}{m^{*}} \sum_{i} p_{i \alpha}^{*} u_{\alpha \beta}\left(\mathbf{r}_{i}\right) p_{i \beta}^{*}, \tag{2.10}
\end{equation*}
$$

whereas the inertial contribution is still given by Eq. (2.7) in terms of the true electron momentum.

III. MOMENTUM TRANSFER STATISTICS

A. Generating function

A massive phonon mode absorbs the momentum that electrons transfer to it without changing its displacement. We may therefore define a statistics of momentum transfer to the phonons without back action on the electrons by choosing the observable $A=P=-i(M \Omega / 2)^{1 / 2}\left(a-a^{\dagger}\right)$ in Eq. (2.2) and taking the limit $M \rightarrow \infty, \Omega \rightarrow 0$ at fixed $M \Omega$. We assume that the phonon mode is initially in the ground state, so that $a \rho_{p}=0$.

We transform to the interaction picture by means of the identity

$$
\begin{equation*}
e^{i H_{0} t} e^{-i H t}=\mathcal{T} \exp \left[-i \int_{0}^{t} d t^{\prime} H_{\mathrm{iut}}\left(t^{\prime}\right)\right] \tag{3.1}
\end{equation*}
$$

where \mathcal{T} denotes time ordering (ealliei times to the right of later times) of the time-dependent operator $H_{\text {mit }}(t)$ $=e^{i H_{0} t} H_{\mathrm{min}} e^{-i H_{0} t}$ In the massive phonon limit we have $H_{\mathrm{mit}}(t)=-Q F(t)$ with time-independent Q (since Q commutes with H_{0} when $\Omega \rightarrow 0$) Equation (2 2) takes the form

$$
\begin{equation*}
\mathcal{F}(\xi)=\left\langle\mathcal{T}_{ \pm} \exp \left[-\imath Q K_{-}(t)\right] e^{\xi P} \exp \left[\imath Q K_{+}(t)\right]\right\rangle \tag{32}
\end{equation*}
$$

where $K_{ \pm}(t)=\int_{0}^{t} d t_{ \pm} F\left(t_{ \pm}\right)$and $\mathcal{T}_{ \pm}$denotes the Keldysh time ordering times t_{-}to the left of times t_{+}, earlier t_{-}to the left of later t_{-}, eailier t_{+}to the rught of later t_{+}

Taking the expectation value of the phonon degiee of fieedom we find

$$
\begin{equation*}
\mathcal{F}(\xi)=e^{\xi^{2} M \Omega / 2}\left\langle\mathcal{T}_{ \pm} \exp \left[\frac{1}{2} \xi\left(K_{-}+K_{+}\right)-\frac{\left(K_{+}-K_{-}\right)^{2}}{4 M \Omega}\right]\right\rangle_{(3} \tag{33}
\end{equation*}
$$

The factor $\exp \left(\xi^{2} M \Omega / 2\right)$ ongmates from the uncertanty $(M \Omega)^{1 / 2}$ of the momentum of the phonon mode in the ground state (vacuum fluctuations) It is a time-independent additive contıbution to the second cumulant, and we can omit it for long detection times The quadiatic term $\propto K_{ \pm}^{2} / M \Omega$ becomes small for a small unceitanty $(M \Omega)^{-1 / 2}$ of the displacement in the giound state It descibes a back action of the phonon mode on the electrons that peisists in the massive phonon limit (A similar effect is known in the context of charge counting statistics ${ }^{14}$) This teim may be of importance in some situations, but we will not considei it here, assuming that the election dynamics is insensitive to the vacuum fluctuations of the phonon mode

With these simplifications we arrive at a formula for the momentum tiansfer statistics,

$$
\begin{equation*}
\mathcal{F}(\xi)=\left\langle\mathcal{T}_{ \pm} \exp \left[\frac{1}{2} \xi K_{-}(t)\right] \exp \left[\frac{1}{2} \xi K_{+}(t)\right]\right\rangle \tag{34}
\end{equation*}
$$

that is of the same form as the formula for chatge countung statistics due to Levitov and Lesovik ${ }^{1}$

$$
\begin{equation*}
\mathcal{F}_{\text {charge }}(\xi)=\left\langle\mathcal{T}_{ \pm} \exp \left[\frac{1}{2} \xi J_{-}(t)\right] \exp \left[\frac{1}{2} \xi J_{+}(t)\right]\right\rangle \tag{35}
\end{equation*}
$$

The role of the integiated cunent $J(t)=\int_{0}^{t} d t^{\prime} I\left(t^{\prime}\right)$ is taken in our problem by the integiated force $K(t)$

B. Relation to displacement statistics

Cumulants $\langle\langle\triangle P(t)\rangle\rangle$ of the momentum transfened in a time t are obtained from the cumulant generating function $\ln \mathcal{F}(\xi)=\Sigma_{n}\left\langle\left\langle\triangle P(t)^{n}\right\rangle\right\rangle \xi^{n} / n \mid$ Cumulants $\left\langle\left\langle F(\omega)^{n}\right\rangle\right\rangle$ of the Fourter tuansformed force $F(\omega)=\int d t e^{i \omega t} F(t)$ then follow from the relation $\triangle P(t)=\int_{0}^{l} d t^{\prime} F\left(t^{\prime}\right)$ The limit $t \rightarrow \infty$ of a long detection time conesponds to the low-fiequency limit

$$
\begin{equation*}
\left\langle\left\langle\prod_{i=1}^{n} F\left(\omega_{i}\right)\right\rangle\right\rangle \rightarrow 2 \pi \delta\left(\sum_{t=1}^{n} \omega_{t}\right) \lim _{t \rightarrow r} \frac{1}{t}\left\langle\left\langle\Delta P(t)^{n}\right\rangle\right\rangle \tag{36}
\end{equation*}
$$

Cumulants of the Fourei thansformed displacement $Q(\omega)$ of the oscillator follow from the phenomenological equation of motion

$$
\begin{equation*}
Q(\omega)=R(\omega) F(\omega), \quad R(\omega)=\frac{1}{M}\left(\Omega^{2}-\omega^{2}-\imath \omega \Omega / \mathcal{Q}\right)^{-1} \tag{37}
\end{equation*}
$$

where \mathcal{Q} is the quality factor of the oscillator Since the force noise is white until fiequencies that are typically $\gg \Omega$, one has, in a good appioximation,

$$
\begin{align*}
& \left\langle\left\langle\prod_{i=1}^{n} Q\left(\omega_{l}\right)\right\rangle\right) \\
& \quad=2 \pi \delta\left(\sum_{t=1}^{n} \omega_{t}\right) \prod_{i=1}^{n} R\left(\omega_{j}\right) \lim _{t \rightarrow \infty} \frac{1}{t}\left\langle\left\langle\triangle P(t)^{n}\right\rangle\right\rangle \tag{38}
\end{align*}
$$

Optical or magnetomotive detection of the vibiation, as in Refs 15-17, measuies the piobability distıbution $P(Q)$ of the displacement at any given tıme The cumulants of $P(Q)$ are obtamed by a Fourier tiansformation of Eq (3 8)

$$
\begin{gather*}
\left\langle\left\langle Q^{n}\right\rangle\right\rangle=\mathcal{R}_{n} \lim _{t \rightarrow \infty} \frac{1}{t}\left\langle\left\langle\Delta P(t)^{n}\right\rangle\right\rangle, \tag{39}\\
\mathcal{R}_{n}=\int \frac{d \omega_{1}}{2 \pi} \int \frac{d \omega_{n}}{2 \pi} R\left(\omega_{1}\right) \quad R\left(\omega_{n}\right) 2 \pi \delta\left(\sum_{t=1}^{n} \omega_{l}\right) \\
=\int_{-\infty}^{\infty} d t R(t)^{n} \tag{310}
\end{gather*}
$$

Fol $Q \geqslant 1$ the odd moments can be neglected, while the even moments are given by

$$
\begin{equation*}
\mathcal{R}_{2 k} \approx \frac{1}{2 k}(M \Omega)^{-2 k} \frac{\mathcal{Q}}{\Omega}, \quad k \ll \mathcal{Q} \tag{311}
\end{equation*}
$$

C. Validity of the massive phonon approximation

These results were obtained in the massive phonon limit Let us estımate how large M should be, for the simplest case of the scatteing of an election (mass m, velocity v_{F}) by a batueı (mass M, velocity Q) Finte M corrections appear because a reflected electron transfers to the barner not only a momentum $2 p_{F}$ but also an enetgy $\delta E \simeq 2 p_{F} Q$ This energy tuansfer effectively changes the voltage drop over the ban en by an amount $\delta V=\delta E / e$, because ieflected electrons suffeı this energy change whereas tuansmitted electrons do not

A voltage diop δV creates a feedback loop The curient is changed by $\delta I=G \delta V$, and hence the force on the barner is changed by $\delta F=\left(2 p_{F} / e\right) \delta I$, hence the velocity of the battuen is changed by $\delta Q=\imath \omega R(\omega) \delta F=4 \imath \omega\left(p_{F} / e\right)^{2} R(\omega) G Q$ (in a Founter representation) The feedback may be neglected if $\delta Q \ll Q$ at the resonance fiequency Ω (where it is strongest) Since $R(\Omega)=t \mathcal{Q} / M \Omega^{2}$ the requiement for negligible feedback, and therefore for the validity of the massive phonon appioximation, is

FIG 1 Sketch of a freely suspended wire The matrices t, t^{\prime} and r, r^{\prime} describe tiansmission and reflection by a localized scatterer (shaded) A voltage V drives a current through the conductor, exciting a vibration

$$
\begin{equation*}
\alpha=\mathcal{Q} \frac{G h}{e^{2}} \frac{E_{F}}{\hbar \Omega} \frac{m}{M} \ll 1 \tag{312}
\end{equation*}
$$

The left-hand side of this mequality is the pioduct of thee large ratios (the quality factor, the dimensionless conductance, and the 1 atio of Fermı energy over phonon energy) and one small 1 atio (the election mass over the mass of the resonato1) Foi typical parameter values of a single-channel conductor one has $G h / e^{2}<1, M=10^{-20} \mathrm{~kg}, \Omega / 2 \pi=5 \mathrm{GHz}$, and $E_{F} / \hbar=0510^{15} \mathrm{~Hz}$, yrelding $\alpha<10^{-3}$ for $\mathcal{Q}=10^{3}$

IV. EVALUATION IN TERMS OF THE SCATTERING MATRIX

The Levitov-Lesovik formula [Eq (35)] for the chatge transfer statistics can be evaluated in terms of the scattering matrix of the conductor, ${ }^{11819}$ without an explicit knowledge of the scattering states This is possible because the cuirent operator depends only on the asymptotuc form of the scattering states, far from the scattering region Formula (34) for the momentum-transfer statistics can be evaluated in a simila way, but only if the mode profile $\mathbf{u}(\mathbf{r})$ is approximately constant over the scattering region

To this end, we first wite foice operator (26) in second quantized form using a basis of scatteıng states $\psi_{n \varepsilon}(\mathbf{r})$

$$
\begin{equation*}
F(t)=\iint \frac{d \varepsilon d \varepsilon^{\prime}}{2 \pi} \sum_{n n^{\prime}} e^{t\left(\varepsilon-\varepsilon^{\prime}\right) t} c_{n}^{\ddagger}(\varepsilon) M_{n n^{\prime}}\left(\varepsilon, \varepsilon^{\prime}\right) c_{n^{\prime}}\left(\varepsilon^{\prime}\right), \tag{41}
\end{equation*}
$$

$$
\begin{align*}
M_{n n^{\prime}}\left(\varepsilon, \varepsilon^{\prime}\right)= & \frac{1}{m} \int d \mathbf{r} \psi_{n \varepsilon}^{r}\left(p_{\alpha} u_{\alpha \beta} p_{\beta}\right. \\
& \left.+\left[\left[u_{\alpha \beta}, p_{\alpha}\right], p_{\beta}\right]\right) \psi_{n^{\prime} \varepsilon^{\prime}} \tag{42}
\end{align*}
$$

The operator $c_{n}(\varepsilon)$ anmhlates an election in the nth scattering channel at energy ε The mode index n iuns from 1 to N (or fiom $N+1$ to $2 N$) for waves incident fiom the left (or fiom the 1 ight) (See Fig 1 for a dragiam of the geometry, and see Ref 20 for the analogous representation of the cur-
rent operator) The commutator $\left[u_{\alpha \beta}, p_{\alpha}\right], p_{\beta}$] can be neglected if \mathbf{u} is smooth on the scale of the wavelength (hence if $\lambda_{F} / L \ll 1$)

We assume that the derivative $u_{\alpha \beta}$ of the mode profile vanishes in the scattering region, so that for the scattering states we may use the asymptotic form

$$
\begin{equation*}
\psi_{n \varepsilon}(\mathbf{r})=\phi_{n \varepsilon}^{\mathrm{in}}(\mathbf{r})+\sum_{m} S_{m n}(\varepsilon) \phi_{m \varepsilon}^{\text {out }}(\mathbf{r}) \tag{43}
\end{equation*}
$$

in teims of incident and outgoing waves $\phi_{n \varepsilon}^{\text {mn out }}$ (normalized to unit current) and the scattering matux $S_{m n}(\varepsilon)$ Since we are neglecting the Lorentz force we may assume that $\phi_{m \varepsilon}^{\text {out }}$ $=\phi_{m}^{\ln \psi}$ The scatteing matrix has the block stiucture

$$
S=\left(\begin{array}{ll}
r & t^{\prime} \tag{44}\\
t & r^{\prime}
\end{array}\right)
$$

with $N \times N$ tiansmission and reflection matuces t, t^{\prime}, and r, r^{\prime} These matices ane related by unitanty ($S=S^{\dagger}$) and possibly also by tıme-reversal symmetry ($S=S^{T}$)

The operator $p_{\alpha} u_{\alpha \beta} p_{\beta}$ will couple only weakly the inc1dent to the outgoing waves, provided \mathbf{u} is smooth on the scale of λ_{F}, and we neglect this coupling The matux M then separates me mordent and outgomg parts

$$
\begin{equation*}
M\left(\varepsilon, \varepsilon^{\prime}\right)=M^{\mathrm{in}}\left(\varepsilon, \varepsilon^{\prime}\right)+S^{\dagger}(\varepsilon) M^{\mathrm{out}}\left(\varepsilon, \varepsilon^{\prime}\right) S\left(\varepsilon^{\prime}\right) \tag{45}
\end{equation*}
$$

The matnces $M^{\text {in }}$ and $M^{\text {out }}$ are defined as in Eq (42) with ψ replaced by $\phi^{\text {in }}$ and $\phi^{\text {out }}$, respectively (They are Hermitian and related by $M^{\text {out }}=M^{\text {in } \psi}$) These two matuces valy with energy on the scale of the Feimı energy E_{Γ}, while the scattering matiox S has a much stionger energy dependence (on the scale of the Thouless energy) We may therefore replace $M^{\text {min }}, M^{\text {out }}$ by then value at $\varepsilon=\varepsilon^{\prime}=E_{F}$ and assume that the energy dependence of M is given entuely by the scattening matıx

The force operator can similaily be separated into F $=F^{\mathrm{nn}}+F^{\text {out }}$, where $F^{\text {in }}$ and $F^{\text {out }}$ are defined as in Eq (41) with the matux M ieplaced by $M^{1 \mathrm{n}}$ and $S^{\dagger} M^{\text {out }} S$, respectively We now proceed in the same way as in Ref 19 for the cunent operator, by noting that the analyticity of $S(\varepsilon)$ in the upper half of the complex plane implies simple commutation relations

$$
\begin{gather*}
{\left[F^{\mathrm{in}}(t), F^{\mathrm{in}}\left(t^{\prime}\right)\right]=0, \quad\left[F^{\text {out }}(t), F^{\text {out }}\left(t^{\prime}\right)\right]=0, \quad \forall t, t^{\prime},} \\
{\left[F^{\mathrm{in}}(t), F^{\text {out }}\left(t^{\prime}\right)\right]=0 \quad \text { if } t>t^{\prime}} \tag{46}
\end{gather*}
$$

It follows that the Keldysh time ordering $T_{ \pm}$of the force operators is the same as the so-called input-output ordering, defined by moving the operators $F_{t n}\left(t_{-}\right)$to the left and $F_{10}\left(t_{+}\right)$to the 11 ght of all other operators-rinespective of the value of the time arguments The reason for piefering inputoutput ordening over time ordering is that Fourier transtormation fiom time to energy commutes with the former otdering but not with the latter

In the limit $t \rightarrow \infty$ different energies become uncoupled, and the cumulant generating function takes the simple form

$$
\begin{equation*}
\ln \mathcal{F}(\xi)=\frac{t}{2 \pi} \int d \varepsilon \ln \left\langle e^{F^{\mathrm{un}}(\varepsilon) \xi / 2} e^{F^{\mathrm{out}}(\varepsilon) \xi} e^{F^{\mathrm{nn}}(\varepsilon) \xi / 2}\right\rangle \tag{47}
\end{equation*}
$$

entuely analogous to the input-output ordered formula for charge transfer ${ }^{19}$ The Fourter tiansformed force is defined as

$$
\begin{gather*}
F^{\mathrm{mn}}(\varepsilon)=c^{\dagger}(\varepsilon) M^{\mathrm{mn}}(\varepsilon, \varepsilon) c(\varepsilon) \tag{48a}\\
F^{\mathrm{out}}(\varepsilon)=c^{\dagger}(\varepsilon) S^{\dagger}(\varepsilon) M^{\mathrm{out}}(\varepsilon, \varepsilon) S(\varepsilon) c(\varepsilon) \tag{48b}
\end{gather*}
$$

(The operators c_{n} have been collected in a vector c)
The matıces $M^{\text {in out }}$ are block diagonal,

$$
M^{\text {in }}=M^{\text {out }}=\left(\begin{array}{cc}
M_{L} & 0 \tag{49}\\
0 & M_{R}
\end{array}\right)
$$

but the $N \times N$ matices $M_{L R}$ ate in general not diagonal themselves They take a simple form for a longitudinal phonon mode, when \mathbf{u} is a function of x in the x ditection (along the conductor), so that $u_{\alpha \beta}(\mathbf{r})=\delta_{\alpha \imath} \delta_{\beta \lambda} u^{\prime}(x)$ The commutator $\left[\left[u^{\prime}, p_{\lambda}\right], p_{\lambda}\right]$ does not contubute because $\phi_{n}^{\mathrm{ml} \text { out }}$ is an ergenstate of p_{x} (with eigenvalue $p_{n}^{\mathrm{in}}=-p_{n}^{\text {out }}=p_{n}$) Hence for a longitudinal vibration one has

$$
\begin{align*}
& \left(M_{L}\right)_{m n^{\prime}}=\delta_{n n^{\prime}}\left|p_{n}\right|\left(u_{0}-u_{L}\right) \tag{410a}\\
& \left(M_{R}\right)_{n n^{\prime}}=\delta_{n n^{\prime}}\left|p_{n}\right|\left(u_{R}-u_{0}\right) \tag{410b}
\end{align*}
$$

The value of $u(x)$ in the scattening region is denoted by u_{0}, while u_{L} and u_{R} denote the values at the left and nght ends of the conductor The more complex situation of a transverse phonon mode, when the matıices $M_{L R}$ ate no longet diagonal, is treated in Ref 21

We are now ready to calculate the expectation value in $\mathrm{Eq}(47)$ We assume that the incident waves oliginate from reselvors in theimal equilibrium at temperature T, with a voltage difference V between the left and right reser von The Fermı function in the left (1rght) ieservou is $f_{L}\left(f_{R}\right)$ We collect the Fermi functions in a diagonal matrix f and write

$$
\left\langle c_{n}^{\dagger}(\varepsilon) c_{n^{\prime}}\left(\varepsilon^{\prime}\right)\right\rangle=f_{n n^{\prime}}(\varepsilon) \delta\left(\varepsilon-\varepsilon^{\prime}\right), \quad f=\left(\begin{array}{cc}
f_{L} & 0 \tag{411}\\
0 & f_{R}
\end{array}\right)
$$

All other expectation values of c and c^{\dagger} vansh We evaluate Eq (47) with help of the detemmantal identity

$$
\begin{equation*}
\left\langle\prod_{t} \exp \left(c^{\dagger} A_{i} c\right)\right\rangle=\left\|1-f+f \prod_{i} e^{A_{t}}\right\| \tag{412}
\end{equation*}
$$

valid for an arbitiaty set of matıices A_{t}, and the identity

$$
\begin{equation*}
\exp \left(S^{\dagger} A S\right)=S^{\dagger} e^{A} S \tag{413}
\end{equation*}
$$

valid for unitary S The result is

$$
\begin{equation*}
\ln \mathcal{F}(\xi)=\frac{t}{2 \pi} \int d \varepsilon \ln \left\|1-f+f e^{\xi M^{\mathrm{mI}}} S^{\prime}(\varepsilon) e^{\xi M^{\text {out }}} S(\varepsilon)\right\| \tag{414}
\end{equation*}
$$

where we have also used that the two matices M^{111} and f commute

At zelo temperature $f_{L}=\theta\left(E_{F}+e V-\varepsilon\right)$ and $f_{R}=\theta\left(E_{F}\right.$ $-\varepsilon$) The energy iange $\varepsilon<E_{F}$, where $f_{L}=f_{R}=1$, contubutes only to the first moment, while the energy range E_{F} $<\varepsilon<E_{F}+e V$, where $f_{L}=1$ and $f_{R}=0$, contributes to all moments For small voltages we may neglect the energy dependence of $S(\varepsilon)$ in that range Using the block stiucture [Eqs (44) and (49)], of $S, M^{\text {in out }}$ the generating function for the second and higher cumulants takes the form

$$
\begin{equation*}
\ln \mathcal{F}(\xi)=\frac{e V t}{2 \pi} \ln \left\|_{\jmath^{\dagger}} e^{\xi M_{I}^{\zeta}}+t^{\dagger} e^{\xi M_{R}^{\kappa}} t\right\|+\mathcal{O}(\xi) \tag{415}
\end{equation*}
$$

[By $\mathcal{O}(\xi)$ we mean terms linear in $\xi]$ This deteiminant cannot be simplified fuithei without knowledge of S That is a major complication relative to the analogous formula for the chatge-transfer statistics, ${ }^{1}$ which can be cast entirely in teims of the tiansmission eigenvalues Γ_{n} (eigenvalues of $t t^{\dagger}$)

$$
\begin{align*}
\ln \mathcal{F}_{\text {charge }}(\xi)= & \frac{t}{2 \pi} \int d \varepsilon \sum_{n} \ln \left[1+\Gamma_{n}\left(e^{c \xi}-1\right) f_{L}\left(1-f_{R}\right)\right. \\
& \left.+\Gamma_{n}\left(e^{-e \xi}-1\right) f_{R}\left(1-f_{L}\right)\right] \tag{416}
\end{align*}
$$

In the case of momentum tiansfer, eigenvalues and eigenvectors both play a role

V. APPLICATION TO A ONE-DIMENSIONAL CONDUCTOR

A. Straight wire

Fuithei simplification of Eqs (4 14) and (4 15) is possible if the conductor is so nanow that it supports only a single propagating mode to the left and inght of the scattering 1 e gion $(N=1)$ The scatteıng matıu then consists of scala transmission and reflection coefficients t, t^{\prime} and t, r^{\prime} (related to each other by unitanity) We consider the case of a longitudinal vibiation with

$$
M^{\mathrm{nn}}=M^{\mathrm{out}}=p_{F}\left(\begin{array}{cc}
u_{0}-u_{L} & 0 \tag{array}\\
0 & u_{R}-u_{0}
\end{array}\right)
$$

[cf Eq (4 10)] Because of unitarity the result depends only on the tıansmission probability $\Gamma=|t|^{2}=\left|t^{\prime}\right|^{2}=1-|r|^{2}=1$ $-\left|1^{\prime}\right|^{2}$,

$$
\begin{align*}
\ln \mathcal{F}(\xi)= & \frac{t}{2 \pi} \int d \varepsilon \ln \left[1+\left(e^{2 \xi p_{I}\left(u_{R}-u_{I}\right)}-1\right) f_{L} f_{R}\right. \\
& +\Gamma\left(e^{\xi p_{I}\left(u_{R}-u_{I}\right)}-1\right)\left[f_{L}\left(1-f_{R}\right)+f_{R}\left(1-f_{L}\right)\right] \\
& +(1-\Gamma)\left(e^{2 \xi p_{I}\left(u_{0}-u_{I}\right)}-1\right) f_{L}\left(1-f_{R}\right) \\
& \left.+(1-\Gamma)\left(e^{2 \xi p_{\Gamma}\left(u_{R}-u_{0}\right)}-1\right) f_{R}\left(1-f_{L}\right)\right] \tag{52}
\end{align*}
$$

At zero temperature this simplifies further to

$$
\begin{equation*}
\ln \mathcal{F}(\xi)=\frac{e V t}{2 \pi} \ln \left[1+\Gamma e^{\xi p_{I}\left(u_{h}+u_{I}-2 u_{0}\right)}-\Gamma\right]+\mathcal{O}(\xi) \tag{53}
\end{equation*}
$$

The zeio-temperature statistics $[\mathrm{Eq}$ (53)] is binomial, just as for the charge [The genetating function $\mathcal{F}_{\text {chuge }}(\xi)$ at $T=0$ is obtaned fiom Eq (5 3) after substitution of $p_{F}\left(u_{R}\right.$
$+u_{L}-2 u_{0}$) by e, cf Eq (416)] At finite temperatures one has the multmomial statistics $[\mathrm{Eq}$ (5 2)], made up of stochastically independent elementaly piocesses with more than two possible outcomes The elementary processes may be characterized by the numbers $\left(n_{1 \mathrm{n}}^{L}, n_{\mathrm{tn}}^{R}\right) \in\{0,1\}$ of electrons moident on the scatterei from the left, inght and the numbers $\left(n_{\text {out }}^{L}, n_{\text {out }}^{R}\right) \in\{0,1\}$ of outgong elections to the left, inght The non-vanıshing probabilities $P\left[\left(n_{\mathrm{in}}^{L}, n_{\mathrm{in}}^{R}\right) \rightarrow\left(n_{\text {out }}^{L}, n_{\text {out }}^{R}\right)\right]$ of scattering events evaluate to

$$
\begin{gather*}
P[(0,0) \rightarrow(0,0)]=\left(1-f_{L}\right)\left(1-f_{R}\right), \\
P[(0,1) \rightarrow(0,1)]=\left(1-f_{L}\right) f_{R}(1-\Gamma), \\
P[(0,1) \rightarrow(1,0)]=\left(1-f_{L}\right) f_{R} \Gamma, \tag{54}\\
P[(1,0) \rightarrow(1,0)]=f_{L}\left(1-f_{R}\right)(1-\Gamma), \\
P[(1,0) \rightarrow(0,1)]=f_{L}\left(1-f_{R}\right) \Gamma, \\
P[(1,1) \rightarrow(1,1)]=f_{L} f_{R}
\end{gather*}
$$

These probabilities appeai in generating function (5 3), multiplied by exponentials of ξ times the amount of tiansferied momentum

A longitudinal vibiation of a stiaight wire clamped at both ends would conespond to $u_{L}=u_{R}=0$ and $u_{0} \neq 0$ In that special case $\mathrm{Eq}(52)$ is equivalent to $\mathrm{Eq}(416)$ for $\mathcal{F}_{\text {charge }}(\xi)$ under the substitution $\Gamma \rightarrow 1-\Gamma, 2 p_{F} u_{0} \rightarrow e$ In this case the multinomal statistics becomes a doublePoissonian in the limit $\Gamma \rightarrow 0$, conesponding to two independent Poisson processes originating fiom the left and right reservoris ${ }^{2}$ A longıtudinal vibration is difficult to observe, in contiast to a transverse vibuation which can be observed optucally ${ }^{1516}$ or magnetomotively ${ }^{17}$ However, the duect excitation of a transverse mode is not possible in a singlechannel conductor, while in a multichannel conductor (width W) it is smaller than the excitation of a longitudinal mode by a factor (W/L) ${ }^{221}$ So it would be desirable to find a way of coupling longitudinal electron motion to tiansveise vibiation modes In the following subsection we discuss how this can be achieved by bending the wile

B. Bent wire

The bending of the wire is descibed as explained in Ref 22 , by means of a vector $\Omega(s)$ that otates the local coordi nate system $\mathbf{e}_{x}(s), \mathbf{e}_{y}(s)$, and $\mathbf{e}_{r}(s)$ as one moves an infinıtesimal distance $d s$ along the wire $\delta \mathbf{e}_{\alpha}=\boldsymbol{\Omega} \times \mathbf{e}_{\alpha} \delta s$ The local coordinate x is along the wie and y, z are perpendicular to it The component $\Omega_{\|}$of $\boldsymbol{\Omega}$ along the wie descibes a torsion (with $\left|\Omega_{\|}\right|$the toision angle per unit length), while the perpendiculat component Ω_{\perp} descibes the bending (with $\left|\Omega_{\perp}\right|^{-1}$ the radius of curvature)

The momentum operators and wave functions, witten in local coordinates, depend on the bending by terms of order $\lambda_{F}|\Omega|$, which we assume to be $\ll 1$ These quantittes may therefore be evaluated for a stratght wine ($\Omega=0$) The dependence on the bending of the strain tensor is of order $L|\boldsymbol{\Omega}|$ and can not be neglected Foi interaction Hamıltonian (25)

FIG 2 Two vibration modes in a bent wire (top) and the cortespondtng longitudinal displacements $\mathbf{u}_{\mathrm{eft}}$ in the straight wire (bottom)
we need $\nabla \mathbf{u}$ in the global coordinate system It is obtained by differentrating the local cooidinates of \mathbf{u} as well as the local basis vectors A bent wire can then be repiesented by a straight wie with an effective displacement $\mathbf{u}_{\text {eff }}$ related to \mathbf{u} (in local coordinates) by

$$
\begin{gather*}
\frac{\partial}{\partial x} \mathbf{u}_{\text {eff }}=\frac{\partial}{\partial x} \mathbf{u}+\boldsymbol{\Omega} \times \mathbf{u}, \tag{55a}\\
\frac{\partial}{\partial y} \mathbf{u}_{\text {eff }}=\frac{\partial}{\partial y} \mathbf{u}, \quad \frac{\partial}{\partial z} \mathbf{u}_{\text {eff }}=\frac{\partial}{\partial z} \mathbf{u} \tag{55b}
\end{gather*}
$$

The second term on the right-hand side of Eq ($5 \mathrm{5a}$) accounts for the centufugal force exerted by an election moving along the bent wire It rotates a tansverse mode, with u pointing in tadial direction, into a fictitious longitudinal mode with $u_{\text {eff }}$ of order $L\left|\Omega_{\perp}\right|$ Note that in order for $\partial u_{\text {eff }} / \partial x$ to be nonzero, the displacement \mathbf{u} needs to induce a stretching/comptession of the wire Only then is \mathbf{e}_{λ} $\partial \mathbf{u} / \partial x=\partial u_{\lambda} / \partial x+\mathbf{e}_{\lambda}(\boldsymbol{\Omega} \times \mathbf{u})=\partial u_{\text {eff } x} / \partial x \neq 0$
Figue 2 shows two vibiation modes in a bent wie with the conesponding longitudinal component $u_{\text {eff },}$ of the effec tive displacement To apply the formulas of Sec VA we need $u_{L}=u_{\text {eff }}\left(x_{L}\right), u_{R}=u_{\text {eff }}\left(x_{R}\right)$, and $u_{0}=u_{\text {eff }}\left(x_{0}\right)$ The first mode, Fig 2(a), has $u_{L}=u_{R}=0$ and $u_{0} \neq 0$ It measures the amount of election momentum that has been tiansfened to the scatterel (located at x_{0}) The statistics of this process is equivalent to the chaige-transfer statistics [Eq (4)16)], as mentioned at the end of the pievious subsection

The second mode, Fig 2(b), has $u_{L}=0, u_{R} \neq 0$, and u_{0} $\ll u_{R}$ (assuming that the scattere1 is located much closet to the left reser von than to the right reservori) It measures the amount of momentum tiansferied fiom the left to the inght reservon Its statistics ieads

$$
\begin{align*}
\ln \mathcal{F}(\xi)= & \frac{t}{2 \pi} \int d \varepsilon \ln \left\{1+\left(e^{2 \xi p_{1} u_{R}}-1\right)\left[f_{R}-\Gamma f_{R}\left(1-f_{l}\right)\right]\right. \\
& \left.+\Gamma\left(e^{\xi p_{l} u_{R}}-1\right)\left[f_{L}\left(1-f_{R}\right)+f_{R}\left(1-f_{L}\right)\right]\right\} \tag{56}
\end{align*}
$$

It cannot be reduced to the charge tiansfer statistics [Eq (4 16)] by a substitution of variables, and in paticulai does not reduce to a double Poissonian in the limit $\Gamma \rightarrow 0$ (It remains multinomial in this limit) Compaing the second cumulant $C^{(2)}$ of momentum with the second cumulant $C_{\text {charge }}^{(2)}$ of charge [the tetms of order $\xi^{2} \mathrm{~m} \mathrm{EqS}(416)$ and (5 6)], we find (setting $u_{R} \equiv 1$)

$$
\begin{equation*}
C^{(2)}-\left(p_{F} / e\right)^{2} C_{\text {clarge }}^{(2)}=\frac{2}{\pi} t p_{F}^{2} k_{B} T(1-\Gamma) \tag{57}
\end{equation*}
$$

The difference vanishes at zero temperature, in accordance with Eq (53) It is independent of the voltage (as long as the energy dependence of Γ can be ignored), so the difference is an equilibrium property

Equation (57) can be given a physical interpietation by grouping the elections to the 11 ght of the scattering region into $n_{>}$11ght movers and $n_{<}$left movers The momentum tuansfer to the 1 ight reservoil is proportional to the sum $n_{>}$ $+n_{<}$, while the charge tiansfer is pioportional to the difference $n_{>}-n_{<}$, hence

$$
\left.\left.\begin{array}{rl}
C^{(2)}-\frac{p_{F}^{2}}{e^{2}} C_{\mathrm{chrrge}}^{(2)} & \propto
\end{array}\right)\left\langle\left(\left(n_{>}+n_{<}\right)^{2}\right\rangle\right\rangle-\left\langle\left\langle\left(n_{>}-n_{<}\right)^{2}\right\rangle\right\rangle\right\rangle
$$

We see that the difference measures conelations between left and nght-moving elections Such conelations are due to elections that ate backscattered with probability $1-\Gamma$ Equation (57) descıbes the vaıance in the number of such backscattered elections, given that elections in an energy ange $k_{B} T$ leave the 1 ght reservon mdependently of each other

VI. EVALUATION IN TERMS OF THE KELDYSH GREEN FUNCTION

A scatteing appioach as in Sec IV is not possible if the displacement $\mathbf{u}(\mathbf{r})$ valies in the scattering iegion Time ordering then no longer reduces to mput-output ordering, and we need the Keldysh technique to make progiess ${ }^{23}$ Following the analogous formulation of the chaige counting statistics, ${ }^{10}$ we wite the generating function (34) as a single exponential of an integial along the Keldysh time contour

$$
\begin{gather*}
\mathcal{F}(\xi)=\left\langle\mathcal{T}_{ \pm} \exp \left[\frac{1}{2} \xi \int_{0}^{t} d t^{\prime} \int d \mathbf{r} F_{ \pm}\left(\mathbf{r}, t^{\prime}\right)\right]\right\rangle, \tag{6la}\\
F_{ \pm}(\mathbf{r}, t)=\frac{1}{m} \sum_{\sigma= \pm} \psi_{\sigma}^{\mathrm{i}}(\mathbf{r}, t) p_{\alpha} u_{\alpha \beta}(\mathbf{r}) p_{\beta} \psi_{\sigma}(\mathbf{r}, t) \tag{6lb}
\end{gather*}
$$

We have witten the force operator in second quantized form, as in Eq (4 1), but do not assume that the election field operator $\psi_{ \pm}(\mathbf{r}, t) \cong \psi\left(\mathbf{r}, t_{ \pm}\right)$takes its asymptotic form in teims of incident and outgoing states ${ }^{24}$

The generating function can be expressed in terms of the Keldysh Gieen function G

$$
\begin{align*}
\frac{d}{d \xi} \ln \mathcal{F}(\xi)= & \frac{\iota}{2 m} \sum_{\sigma= \pm} \sigma \int_{0}^{t} d t^{\prime} \int d \mathbf{R} u_{\alpha \beta}(\mathbf{R}) \\
& \left.\frac{\partial^{2}}{\partial t_{\alpha} \partial r_{\beta}} G_{\sigma \sigma}\left(\mathbf{R}, \mathbf{r}, t^{\prime}, t^{\prime}, \xi\right)\right|_{\mathbf{r}=0} \tag{62}
\end{align*}
$$

The Gieen function $G_{\sigma \sigma^{\prime}}$ is a 2×2 matix in the indices $\sigma, \sigma^{\prime} \in\{+,-\}$ that assure the conect time ordening of the operators It is defined by

$$
\begin{equation*}
G_{\sigma \sigma^{\prime}}\left(\mathbf{R}, \mathbf{r}, t, t^{\prime}, \xi\right)=\frac{-\imath \sigma\left\langle\mathcal{T}_{ \pm} \psi_{\sigma}\left(\mathbf{R}+\frac{1}{2} \mathbf{r}, t\right) \psi_{\sigma^{\prime}}^{\dagger}\left(\mathbf{R}-\frac{1}{2} \mathbf{r}, t^{\prime}\right) \exp \left[\frac{1}{2} \xi \int_{0}^{t} d t^{\prime} \int d \mathbf{r}^{\prime} F_{ \pm}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right]\right\rangle}{\left(\mathcal{T}_{ \pm} \exp \left[\frac{1}{2} \xi \int_{0}^{t} d t^{\prime} \int d \mathbf{r}^{\prime} F_{ \pm}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right]\right)} \tag{63}
\end{equation*}
$$

VII. APPLICATION TO A DIFFUSIVE CONDUCTOR

We apply the formalism of Sec VI to the example of diffusive election tiansport through a fieely suspended disordened wie The semiclassical calculation of the transverse momentum norse in this geometry was done in Ref 8 , so we can compare results

Foi long detection times we may assume that the Gieen function (63) depends only on the difference $\tau=t-t^{\prime}$ of the time arguments A Fourei tuansform gives

$$
\begin{equation*}
G_{\sigma \sigma^{\prime}}(\mathbf{R}, \mathbf{p}, \varepsilon, \xi)=\int d \mathbf{r} \int d \tau e^{-i \mathbf{p} 1-i \varepsilon \tau} G_{\sigma \sigma^{\prime}}(\mathbf{R}, \mathbf{r}, \tau, \xi) \tag{71}
\end{equation*}
$$

We wirte $\mathbf{p}=|\mathbf{p}| \mathbf{n}$ and use the fact that in the semiclassical limit the Gieen function is peaked as a function of the abso-
lute value $|\mathbf{p}|$ of the momentum Integiation over this van1able yrelds the semiclassical Gieen function ${ }^{23}$

$$
\begin{equation*}
G_{\sigma \sigma^{\prime}}(\mathbf{R}, \mathbf{n}, \varepsilon, \xi)=\frac{\imath}{\pi} \int d \varepsilon^{\prime} G_{\sigma \sigma^{\prime}}\left(\mathbf{R}, \mathbf{n} \sqrt{2 m \varepsilon^{\prime}}, \varepsilon, \xi\right) \tag{72}
\end{equation*}
$$

We next make the diffusion appioximation, expanding the \mathbf{n} dependence in spheical hamomics

$$
\begin{align*}
G_{\sigma \sigma^{\prime}}(\mathbf{R}, \mathbf{n}, \varepsilon, \xi)= & G_{\sigma \sigma^{\prime}}^{(0)}(\mathbf{R}, \varepsilon, \xi)+n_{\alpha} G_{a \sigma \sigma^{\prime}}^{(1)}(\mathbf{R}, \varepsilon, \xi) \\
& +\left(n_{\alpha} n_{\beta}-\frac{1}{3} \delta_{\alpha \beta}\right) G_{\alpha \beta \sigma \sigma^{\prime}}^{(2)}(\mathbf{R}, \varepsilon, \xi) \tag{73}
\end{align*}
$$

Substrtuting Eq (73) into Eq (62) we find

$$
\begin{align*}
\frac{d}{d \xi} \ln F(\xi)= & \frac{1}{2} t E_{F} \nu \sum_{\sigma= \pm} \sigma \int d \varepsilon \int d \mathbf{R} u_{\alpha \beta}(\mathbf{R}) \\
& \times\left[\frac{1}{3} \delta_{\alpha \beta} G_{\sigma \sigma}^{(0)}(\mathbf{R}, \varepsilon, \xi)+\frac{2}{15} G_{\alpha \beta \sigma \sigma}^{(2)}(\mathbf{R}, \varepsilon, \xi)\right] \tag{74}
\end{align*}
$$

where $\nu=p_{\Gamma}^{2} / 2 \pi^{2} v_{F}$ is the density of states
The equation of motion for the semiclassical Gieen function in the diffusion approximation is derived in the same way as for the chatge statistics ${ }^{10}$ We find

$$
\begin{equation*}
2 \ln _{\alpha} \frac{\partial}{\partial R_{\alpha}} G+\left[G^{(0)}, G\right]+\xi p_{F} l u_{\alpha \beta} n{ }_{\alpha} n_{\beta}\left[\tau_{3}, G\right]=0 \tag{75}
\end{equation*}
$$

The length l is the mean fiee path, assuming isotropic impurity scattering The commutators [,] are taken with iespect to the Keldysh indices σ, σ^{\prime}, and τ_{3} is the third Paulı matrix in these indices The Gieen function satisfies the normalization condition $G^{2}=1$ that is respected by differential equation (75) The boundary conditions at the left and 1 ight ends of the wire are ${ }^{10}$

$$
\begin{align*}
& G_{L}=\left(\begin{array}{cc}
1-2 f_{L} & 2 f_{L} \\
2-2 f_{L} & 2 f_{L}-1
\end{array}\right), \\
& G_{R}=\left(\begin{array}{cc}
1-2 f_{R} & 2 f_{R} \\
2-2 f_{R} & 2 f_{R}-1
\end{array}\right) \tag{76}
\end{align*}
$$

By projecting Eq (75) onto spheitcal harmonics we find that, to leading order in l / L, the second harmonic $G^{(2)}$ depends only on the zeroth hamonic $G^{(0)}$

$$
\begin{equation*}
G_{\alpha \beta}^{(2)}=\frac{\xi}{2} p_{F} l\left(u_{\alpha \beta}-\frac{1}{3} \delta_{\alpha \beta} u_{\gamma \gamma}\right) G^{(0)}\left[\tau_{3}, G^{(0)}\right]\left[1+\mathcal{O}(l / L)^{2}\right] \tag{77}
\end{equation*}
$$

Combining this relation with Eq (74) we see that the momentum statistics of a tiansverse mode, with $u_{\lambda, x}=0, u_{\lambda\}}$ $\neq 0$, follows fiom

$$
\begin{align*}
\frac{d}{d \xi} \ln F(\xi)= & \frac{\xi}{30} t p_{F} l E_{\Gamma} \nu \sum_{\sigma \alpha \beta} \int d \varepsilon \int d \mathbf{R} u_{\alpha \beta}^{2} \\
& \times\left(\tau_{3} G^{(0)}\left[\tau_{3}, G^{(0)}\right]\right)_{\sigma \sigma} \tag{78}
\end{align*}
$$

It remans to compute $G^{(0)}$ To calculate $\ln \mathcal{F}$ to ordeı ξ^{2}, that is to calculate the variance $C^{(2)}$ of the force norse, it is sufficient to know $G^{(0)}$ for $\xi=0$ The solution to unperturbed diffusion equation (75) is known, ${ }^{10}$

$$
G^{(0)}(\mathbf{R}, \varepsilon, \xi=0)=\left(\begin{array}{cc}
1-2 f(\mathbf{R}, \varepsilon) & 2 f(\mathbf{R}, \varepsilon) \tag{79}\\
2-2 f(\mathbf{R}, \varepsilon) & 2 f(\mathbf{R}, \varepsilon)-1
\end{array}\right)
$$

where $f(\mathbf{R}, \varepsilon)=f_{L}(\varepsilon)+(x / L)\left[f_{R}(\varepsilon)-f_{L}(\varepsilon)\right]$ (The coordtnate x uns along the wre, from $x=0$ to $\lambda=L$) We find

$$
\begin{equation*}
C^{(2)}=t \frac{16}{15} p_{F} l E_{F} \nu A \int_{0}^{L} d x d \varepsilon u_{\lambda \jmath}^{2}(x) f(x, \varepsilon)[1-f(x, \varepsilon)], \tag{710}
\end{equation*}
$$

with A the cross-sectional area of the wire This is the same result as in Ref 8

More complicated networks of diffusive wies, including tunnel barriers or point contacts, can be treated in the same way In such situations the unpeiturbed Gieen function $G^{(0)}(\mathbf{R}, \varepsilon, \xi=0)$ can be determıned using Nazaiov's cucuit theory, ${ }^{24}$ and then substituted into Eq (78)

VIII. CONCLUSION

We conclude by estmating the order of magnitude of the cumulants of the displacement distribution $P(Q)$ of a vibiating current-cariying wire For an oscillator with a laige quality factor only the even order cumulants $\left\langle\left\langle Q^{2 k}\right\rangle\right\rangle$ are apprecrable, given in good approximation by

$$
\begin{equation*}
\left.\left\langle\left\langle Q^{2 k}\right\rangle\right\rangle \approx \frac{1}{2 k}\left(M \omega_{0}\right)^{-2 k} \frac{\mathcal{Q}}{\omega_{0}} \lim \frac{1}{t \rightarrow s} t\left\langle\Delta P(t)^{2 k}\right\rangle\right\rangle, \tag{array}
\end{equation*}
$$

cf Eqs (39) and (311) The cumulants of tiansferred momentum $\triangle P$ have been calculated for a single-channel conductor with a localized scatterei in Sec V At zeio temperature one has

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{1}{t}\left\langle\left\langle\triangle P(t)^{2 k}\right\rangle\right\rangle= & \frac{e V}{2 \pi \hbar} p_{F}^{2 k}\left(u_{R}+u_{L}-2 u_{0}\right)^{2 k} \frac{d^{2 k}}{d \xi^{2 k}} \ln [1 \\
& \left.+\Gamma\left(e^{\xi}-1\right)\right]\left.\right|_{\xi=0}, \tag{82}
\end{align*}
$$

cf Eq (53) (We have reinserted Planck's constant \hbar for clarty)

Combining Eqs (81) and (82) we see that in order of magnitude $\left\langle\left\langle Q^{2 k}\right\rangle\right\rangle \simeq\left(e V \mathcal{Q} / \hbar \omega_{0}\right)\left(p_{F} / M \omega_{0}\right)^{2 k}$ Insetting parameter values (following Ref 7) $V=1 \mathrm{mV}, \mathcal{Q}=10^{3}$, $\omega_{0} / 2 \pi=5 \mathrm{GHz}, p_{F}=2 \times 10^{-24} \mathrm{Ns}$, and $M=10^{-20} \mathrm{~kg}$, we estumate

$$
\begin{equation*}
\left\langle\left\langle Q^{2 k}\right\rangle\right\rangle^{1 / 2 k} \approx 10^{4 / 2 k} \times 10^{-4} \AA \tag{83}
\end{equation*}
$$

Detectors with a $10^{-4}-\AA$ sensitivity have been proposed ${ }^{25}$ Fol a measurement of higher-order cumulants one would want cumulants of different order to be of toughly the same magnitude This can be achieved by choosing the number $e V Q / \hbar \omega_{0}$ not too large For the patameters chosen above, $\left\langle\left\langle Q^{4}\right\rangle\right\rangle^{1 / 4} /\left\langle\left\langle Q^{2}\right\rangle\right\rangle^{1 / 2} \approx 01$

The theory presented in this work is more than a fiamework for the calculation of higher order cumulants in the momentum tiansfer statistics It also piovides for a formalism to theat quantum effects in electiomechanical norse A fist application, to quantum size effects in a constiction, has been realized ${ }^{21}$ Other applications, including resonant tunneling, supeiconductivity, and interaction effects, are envisaged

ACKNOWLEDGMENTS

This research was supported by the "Nederlandse organisatie voor Wetenschappelyk Onderzoek" (NWO) and by the "Stıchting voor Fundamenteel Ondeızoek deı Mateıe" (FOM)

APPENDIX A: DERIVATION OF UNITARY TRANSFORMATION (2.4)

We demonstate that the operator U given in Eq (24) has the desued property $[\mathrm{Eq}(23)]$ of elmmnating the phonon displacement fiom the ion potential By expanding the exponential in Eq (24) we calculate the effect of U on a oneelection and one-phonon wave function in the position space representation

$$
\begin{equation*}
U \psi(\mathbf{r}, q)=\|J\|^{1 / 2} \psi[\mathbf{r}-q \mathbf{u}(\mathbf{r}), q] \tag{Al}
\end{equation*}
$$

We prove Eq (23) by calculating matıx elements

$$
\begin{align*}
\left\langle\psi_{1}\right| & U^{\dagger} V[\mathbf{r}-Q \mathbf{u}(\mathbf{r})] U\left|\psi_{2}\right\rangle \\
= & \int d \mathbf{r} \int d q\|J\| \psi_{1}^{\mathrm{k}}[\mathbf{r}-q \mathbf{u}(\mathbf{r}), q] \\
& \times V[\mathbf{r}-q \mathbf{u}(\mathbf{r})] \psi_{2}[\mathbf{r}-q \mathbf{u}(\mathbf{r}), q] \\
= & \int \tilde{d} \widetilde{\mathbf{r}} \int d q \psi_{1}^{r}(\widetilde{\mathbf{r}}, q) V(\widetilde{\mathbf{r}}) \psi_{2}(\widetilde{\mathbf{r}}, q) \\
= & \left\langle\psi_{1}\right| V\left|\psi_{2}\right\rangle \tag{A2}
\end{align*}
$$

The unitarty of U follows as the special case $V \equiv 1$
We now justify the replacement of $\widetilde{\rho}=U^{\dagger} \rho U$ with ρ and $\widetilde{A}=U^{\dagger} A U$ by A in generating function (28), in the limit of a long detection time t Since Q commutes with U, it is sufficient to consider $A=P$ [Then $\widetilde{A}=A(Q, \widetilde{P})$ in the more geneial case that A is a function of both Q and $P]$ To fist ordei in the displacement one has

$$
\begin{equation*}
\widetilde{P}=P-\Pi+\mathcal{O}\left(\mathbf{u}^{2}\right) \tag{A3}
\end{equation*}
$$

The difference between \widetilde{P} and P is of the order of the total momentum Π inside the wie, which is t independent in a stationaly state Since the expectation value (as well as higher cumulants) of P incieases linearly with t, we can neglect the difference between \widetilde{P} and P for lange t

To justify the replacement of $\tilde{\rho}$ by ρ we note that the effect of U on the initial state is to shift the election coordinates by the local phonon displacement [cf Eq (A1)] This initial shift has only a tiansient effect and can be neglected for lange t

APPENDIX B: EFFECTIVE MASS APPROXIMATION

We stant with Hamiltonian (25) with $V=V_{\text {lat }}+V_{\text {imp }}$ In the absence of any deformation of the periodic lattice one has, in the effective mass appioximation,

$$
\begin{equation*}
\frac{1}{2 m} \mathbf{p}^{2}+V_{\text {lat }}(\mathbf{r})=\frac{1}{2 m^{r}} \mathbf{p}^{+2} \tag{B}
\end{equation*}
$$

The quasimomentum operator \mathbf{p}^{r} is defined in terms of the Bloch function $g(\mathbf{r})$ by $\mathbf{p}^{4}=-\operatorname{tg} \nabla g^{-1}$ We seek a similai appioximation to the same Hamiltonian in a distorted lattice, assuming that \mathbf{u} is sufficiently smooth that we can neglect dersvatives of the shear tensor $u_{\alpha \beta}$ Hamiltonian (25) (for one election) then has the form
$H=\frac{1}{2 m} p_{\alpha}\left(\delta_{\alpha \beta}-2 Q u_{\alpha \beta}\right) p_{\beta}+V_{\mathrm{lat}}+V_{\mathrm{mpp}}-\frac{1}{M} P \Pi+\Omega a^{\top} a$

For small displacements Q the real symmetric matıix $X_{\alpha \beta}$ $=\delta_{\alpha \beta}-2 Q u_{\alpha \beta}$ is positive definite We can therefore factorrze $\mathbf{X}=\mathbf{T T}^{T}$, with \mathbf{T} real We change coordinates to $\tilde{\mathbf{r}}$ $=\mathbf{T}^{-1} \mathbf{r}$, and find

$$
\begin{equation*}
H=-\frac{1}{2 m} \frac{\partial}{\partial \tilde{t}_{\alpha}} \frac{\partial}{\partial \tilde{t}_{\alpha}}+V_{\mathrm{lat}}(\tilde{\mathbf{T r}})+V_{\operatorname{tmp}}(\tilde{\mathbf{T} \mathbf{r}})-\frac{1}{M} P \Pi+\Omega a^{\dagger} a \tag{B3}
\end{equation*}
$$

We now make the assumption of a deformation independent effective mass, ${ }^{1213}$ that is to say we assume that the Hamiltonian with the distorted lattice potental $V_{\text {lat }}(\widetilde{T} \tilde{r})$ is appioximated as in Eq (B1) with distorted Bloch functions, but the same effectrve mass m^{+}Hence

$$
\begin{align*}
H= & -\frac{1}{2 m^{*}}\left[g(\tilde{\mathbf{T}}) \frac{\partial}{\partial \tilde{\jmath_{\alpha}}} \frac{1}{g(\mathbf{T} \tilde{\mathbf{r}})}\right]^{2}+V_{\operatorname{tmp}}(\tilde{\mathbf{T}})-\frac{1}{M} P \Pi \\
& +\Omega a^{\dagger} a \tag{B4}
\end{align*}
$$

Tiansforming back to the ongmal coordinates we annve at the Hamiltoman

$$
\begin{equation*}
H=\frac{1}{2 m} p_{\alpha}^{\grave{\alpha}}\left(\delta_{\alpha \beta}-2 Q u_{\alpha \beta}\right) p_{\beta}^{\dot{r}}+V_{\mathrm{mmp}}-\frac{1}{M} P \Pi+\Omega a^{\top} a \tag{B5}
\end{equation*}
$$

given in Sec II

[^0][^1]Rev Lett 88, 228303 (2002)
${ }^{9}$ M L Roukes, Phys World 14, 25 (2001), cond-mat/0008187 (unpublished)
${ }^{10}$ Yu V Nazarov, Ann Phys (Leipzıg) 8, 507 (1999)
${ }^{11}$ K E Nagaev, Phys Rev B 66, 075334 (2002)
${ }^{12}$ V M Kontorovich, Usp Fiz Nauk 142, 265 (1984) [Sov Phys Usp 27, 134 (1984)]
${ }^{13}$ V B Fiks, Zh Éksp Teor Fiz 75, 137 (1978) [Sov Phys JETP 48, 68 (1978)]
${ }^{14} \mathrm{Yu}$ V Nazarov and M Kındermann, cond-mat/0107133 (unpublished)
${ }^{15}$ G Meyer and N M Amer, Appl Phys Lett 53, 1045 (1988)
${ }^{16} \mathrm{M}$ M J Treacy, T W Ebbesen, and J M Gıbson, Nature (London) 381, 678 (1996)
${ }^{17}$ A N Cleland and M L Roukes, Appl Phys Lett 69, 2653 (1996)
${ }^{18}$ B A Muzykantskıı and D E Khmelnıtskı, Phys Rev B 50, 3982 (1994)
${ }^{19}$ C W J Beenakker and H Schomerus, Phys Rev Lett 86, 700 (2001)
${ }^{20}$ M Buttıker, Phys Rev Lett 65, 2901 (1990)
${ }^{21} \mathrm{~A}$ Tajı, M Kındeımann, and C W J Beenakker, cond-mat/0206306, Phys Rev B (to be published)
${ }^{22} \mathrm{~L}$ D Landau and E M Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1959), Sec 18
${ }^{23}$ J Rammer and H Smith, Rev Mod Phys 58, 323 (1986)
${ }^{24} \mathrm{Yu}$ V Nazarov, in Quantum Dynamics of Submicıon Stıuctures, Vol 291 of NATO Advanced Study Institute, Series E, edited by H A Ceiderra, B Kramer, and G Schon (Kluwer, Dordrecht, 1995)
${ }^{25}$ Y Zhang and M P Blencowe, J Appl Phys 91, 4249 (2002)

[^0]: ${ }^{1}$ L S Levitov and G B Lesovik, Pıs'ma Zh Eksp Teor Fiz 58 225 (1993) [JETP Lett 58, 230 (1993)], L S Levitov, H Lee, and G B Lesovik, J Math Phys 37, 4845 (1996)
 ${ }^{2}$ L S Levitov and M Reznikov cond mat/0111057 (unpublished)
 ${ }^{3}$ Ya M Blanter and M Buttıke1, Phys Rep 336, 1 (2000)
 ${ }^{4}$ D B Gutman and Y Gefen, cond mat/0201007 (unpublished)

[^1]: ${ }^{5}$ B Yurke and G P Kochanskı, Phys Rev B 41, 8184 (1990)
 ${ }^{6} \mathrm{C}$ Presilla, R Onofıo, and M F Bocko, Phys Rev B 45, 3735 (1992)
 ${ }^{7}$ N F Schwabe, A N Cleland, M C Cioss, and M L Roukes Phys Rev B 52, 12911 (1995)
 ${ }^{8} \mathrm{~A}$ V Shytov, L S Levitov, and C W J Beenakker, Phys

