136 research outputs found

    Adrenalectomy alters the sensitivity of the central nervous system melanocortin system

    Get PDF
    Removal of adrenal steroids by adrenalectomy (ADX) reduces food intake and body weight in rodents and prevents excessive weight gain in many genetic and dietary models of obesity. Thus, glucocorticoids appear to play a key role to promote positive energy balance in normal and pathological conditions. By comparison, central nervous system melanocortin signaling provides critical inhibitory tone to regulate energy balance. The present experiments sought to test whether glucocorticoids influence energy balance by altering the sensitivity to melanocortin receptor ligands. Because melanocortin-producing neurons are hypothesized to be downstream of leptin in a key weight-reducing circuit, we tested rats for their sensitivity to leptin and confirmed reports that the hypophagic response to third ventricular (i3vt) leptin is increased in ADX rats and is normalized by glucocorticoid replacement. Next we tested rats for their sensitivity to the melanocortin agonist melanotan II and found that, as for leptin, ADX enhanced the hypophagic response via a glucocorticoid-dependent mechanism. The central nervous system melanocortin system is unique in that it includes the endogenous melanocortin receptor antagonist, AgRP. The orexigenic effect of i3vt AgRP was absent in ADX rats and restored by glucocorticoid replacement. We conclude that the potent weight-reducing effects of ADX likely involve heightened responsiveness to melanocortin receptor stimulation

    Distinct Hypothalamic Neurons Mediate Estrogenic Effects on Energy Homeostasis and Reproduction

    Get PDF
    SummaryEstrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia, and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction

    Metabolic Control by S6 Kinases Depends on Dietary Lipids

    Get PDF
    Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko) with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism

    Estrogen receptor–α in medial amygdala neurons regulates body weight

    Get PDF
    Estrogen receptor–α (ERα) activity in the brain prevents obesity in both males and females. However, the ERα-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-minded–1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels of ERα. Specific deletion of the gene encoding ERα (Esr1) from SIM1 neurons, which are mostly within the MeA, caused hypoactivity and obesity in both male and female mice fed with regular chow, increased susceptibility to diet-induced obesity (DIO) in males but not in females, and blunted the body weight–lowering effects of a glucagon-like peptide-1–estrogen (GLP-1–estrogen) conjugate. Furthermore, selective adeno-associated virus-mediated deletion of Esr1 in the MeA of adult male mice produced a rapid body weight gain that was associated with remarkable reductions in physical activity but did not alter food intake. Conversely, overexpression of ERα in the MeA markedly reduced the severity of DIO in male mice. Finally, an ERα agonist depolarized MeA SIM1 neurons and increased their firing rate, and designer receptors exclusively activated by designer drug–mediated (DREADD-mediated) activation of these neurons increased physical activity in mice. Collectively, our results support a model where ERα signals activate MeA neurons to stimulate physical activity, which in turn prevents body weight gain

    Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity

    Get PDF
    The close correspondence between energy intake and expenditure over prolonged time periods, coupled with an apparent protection of the level of body adiposity in the face of perturbations of energy balance, has led to the idea that body fatness is regulated via mechanisms that control intake and energy expenditure. Two models have dominated the discussion of how this regulation might take place. The set point model is rooted in physiology, genetics and molecular biology, and suggests that there is an active feedback mechanism linking adipose tissue (stored energy) to intake and expenditure via a set point, presumably encoded in the brain. This model is consistent with many of the biological aspects of energy balance, but struggles to explain the many significant environmental and social influences on obesity, food intake and physical activity. More importantly, the set point model does not effectively explain the ‘obesity epidemic' - the large increase in body weight and adiposity of a large proportion of individuals in many countries since the 1980s. An alternative model, called the settling point model, is based on the idea that there is passive feedback between the size of the body stores and aspects of expenditure. This model accommodates many of the social and environmental characteristics of energy balance, but struggles to explain some of the biological and genetic aspects. The shortcomings of these two models reflect their failure to address the gene-by-environment interactions that dominate the regulation of body weight. We discuss two additional models - the general intake model and the dual intervention point model - that address this issue and might offer better ways to understand how body fatness is controlled

    Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    Get PDF
    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1–estrogen (GLP-1–estrogen) conjugate designed to deliver estrogen to GLP1 receptor–enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1–estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies

    CCR5 Haplotypes and Mother-to-Child HIV Transmission in Malawi

    Get PDF
    CCR5 and CCR2 gene polymorphisms (SNPs) have been associated with protection against HIV transmission in adults and with delayed progression to AIDS. The CCR5 Delta32 deletion and SNP -2459G are associated with reduced expression of the CCR5 protein.We investigated the association between infant CCR2/CCR5 diplotype and HIV mother to child transmission (MTCT) in Malawi. Blood samples from infants (n = 552) of HIV positive women who received nevirapine were genotyped using a post-PCR multiplex ligase detection reaction and haplotypes were identified based on 8 CCR2/CCR5 SNPs and the open reading frame 32 base pair deletion. Following verification of Hardy-Weinberg equilibrium, log linear regression was performed to examine the association between mutations and MTCT. Overall, protection against MTCT was weakly associated with two CCR5 SNPs, -2459G (Risk ratio [RR], 0.78; confidence interval [CI], 0.54-1.12), and the linked CCR5 -2135T (RR, 0.78; CI, 0.54-1.13). No child carried the CCR5 Delta32 SNP. Maternal Viral Load (MVL) was found to be an effect measure modifier. Among mothers with low MVL, statistically significant protection against MTCT was observed for -2459G (RR, 0.50; CI, 0.27-0.91), and -2135T (RR, 0.51; CI, 0.28-0.92). Statistically significant protection was not found at high MVL.Results from this study suggest that CCR5 SNPs -2459G and -2135T associated with reduced receptor expression protect against MTCT of HIV at low MVLs, whereas high MVLs may over-ride differences in coreceptor availability
    corecore