14 research outputs found

    Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface : A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface

    Get PDF
    The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using L-lysine vs. poly-L-lysine (PLL), and L-glutamic acid vs. poly-L-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces

    Amino Acids Generated from Hydrated Titan Tholins: Comparison with Miller-Urey Electric Discharge Products

    Get PDF
    Various analogues of Titan haze particles (termed tholins) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH3) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH3 at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FDToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller-Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH4N2H2O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution

    Deep Earth carbon reactions through time and space

    Get PDF
    The authors acknowledge partial support from the Sloan Foundation grant G-2016-7157.Reactions involving carbon in the deep Earth have limited manifestation on Earth’s surface, yet they have played a critical role in the evolution of our planet. The metal-silicate partitioning reaction promoted carbon capture during Earth’s accretion and may have sequestered substantial carbon in Earth’s core. The freezing reaction involving iron-carbon liquid could have contributed to the growth of Earth’s inner core and the geodynamo. The redox melting/freezing reaction largely controls the movement of carbon in the modern mantle, and reactions between carbonates and silicates in the deep mantle also promote carbon mobility. The ten-year activity of the Deep Carbon Observatory has made important contributions to our knowledge of how these reactions are involved in the cycling of carbon throughout our planet, both past and present, and helped to identify gaps in our understanding that motivate and give direction to future studies.Publisher PDFPeer reviewe

    Life-Detection Technologies for the Next Two Decades

    Full text link
    Since its inception six decades ago, astrobiology has diversified immensely to encompass several scientific questions including the origin and evolution of Terran life, the organic chemical composition of extraterrestrial objects, and the concept of habitability, among others. The detection of life beyond Earth forms the main goal of astrobiology, and a significant one for space exploration in general. This goal has galvanized and connected with other critical areas of investigation such as the analysis of meteorites and early Earth geological and biological systems, materials gathered by sample-return space missions, laboratory and computer simulations of extraterrestrial and early Earth environmental chemistry, astronomical remote sensing, and in-situ space exploration missions. Lately, scattered efforts are being undertaken towards the R&D of the novel and as-yet-space-unproven life-detection technologies capable of obtaining unambiguous evidence of extraterrestrial life, even if it is significantly different from Terran life. As the suite of space-proven payloads improves in breadth and sensitivity, this is an apt time to examine the progress and future of life-detection technologies.Comment: 6 pages, the white paper was submitted to and cited by the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Univers

    A Strategy for Origins of Life Research

    Get PDF
    Aworkshop was held August 26–28, 2015, by the Earth- Life Science Institute (ELSI) Origins Network (EON, see Appendix I) at the Tokyo Institute of Technology. This meeting gathered a diverse group of around 40 scholars researching the origins of life (OoL) from various perspectives with the intent to find common ground, identify key questions and investigations for progress, and guide EON by suggesting a roadmap of activities. Specific challenges that the attendees were encouraged to address included the following: What key questions, ideas, and investigations should the OoL research community address in the near and long term? How can this community better organize itself and prioritize its efforts? What roles can particular subfields play, and what can ELSI and EON do to facilitate research progress? (See also Appendix II.) The present document is a product of that workshop; a white paper that serves as a record of the discussion that took place and a guide and stimulus to the solution of the most urgent and important issues in the study of the OoL. This paper is not intended to be comprehensive or a balanced representation of the opinions of the entire OoL research community. It is intended to present a number of important position statements that contain many aspirational goals and suggestions as to how progress can be made in understanding the OoL. The key role played in the field by current societies and recurring meetings over the past many decades is fully acknowledged, including the International Society for the Study of the Origin of Life (ISSOL) and its official journal Origins of Life and Evolution of Biospheres, as well as the International Society for Artificial Life (ISAL)

    Addressing the Miller Paradox and the Prebiotic Synthesis of Nucleobases

    No full text
    In origins of life research, there is a general consensus that the prebiotic syntheses of nucleobases and sugars in the same location are problematic because reactions containing both hydrogen cyanide and formaldehyde react to produce glycolonitrile and inhibit the syntheses of nucleobases and sugars (referred to as the Miller Paradox). Here, we used a direct analysis in a real-time ionization source coupled to a high-resolution orbitrap mass spectrometer to rapidly analyze products from a set of aqueous reactions containing various concentrations and ratios of ammonium cyanide and formaldehyde. We observed that several nucleobases and nucleobase analogs were synthesized in ammonium cyanide reactions in the presence of formaldehyde, which suggests that the Miller Paradox may not be as detrimental for nucleobase (and nucleobase analogue) synthesis as previously thought

    The origin of biomolecules

    No full text

    Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface

    No full text
    The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces

    Mineral--organic interfacial processes: potential roles in the origins of life

    No full text
    Life is believed to have originated on Earth 4.4–3.5 Ga ago, via processes in which organic compounds supplied by the environment self-organized, in some geochemical environmental niches, into systems capable of replication with hereditary mutation. This process is generally supposed to have occurred in an aqueous environment and, likely, in the presence of minerals. Mineral surfaces present rich opportunities for heterogeneous catalysis and concentration which may have significantly altered and directed the process of prebiotic organic complexification leading to life. We review here general concepts in prebiotic mineral-organic interfacial processes, as well as recent advances in the study of mineral surface-organic interactions of potential relevance to understanding the origin of life
    corecore