190 research outputs found
High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome
<p>Abstract</p> <p>Background</p> <p>Chocolate is rich in flavonoids that have been shown to be of benefit in disparate conditions including cardiovascular disease and cancer. The effect of polyphenol rich chocolate in subjects with chronic fatigue syndrome (CFS) has not been studied previously.</p> <p>Methods</p> <p>We conducted a double blinded, randomised, clinical pilot crossover study comparing high cocoa liquor/polyphenol rich chocolate (HCL/PR) in comparison to simulated iso-calorific chocolate (cocoa liquor free/low polyphenols(CLF/LP)) on fatigue and residual function in subjects with chronic fatigue syndrome. Subjects with CFS having severe fatigue of at least 10 out of 11 on the Chalder Fatigue Scale were enrolled. Subjects had either 8 weeks of intervention in the form of HCL/PR or CLF/LP, with a 2 week wash out period followed by 8 weeks of intervention with the other chocolate.</p> <p>Results</p> <p>Ten subjects were enrolled in the study. The Chalder Fatigue Scale score improved significantly after 8 weeks of the HCL/PR chocolate arm [median (range) Exact Sig. (2-tailed)] [33 (25 - 38) vs. 21.5 (6 - 35) 0.01], but that deteriorated significantly when subjects were given simulated iso-calorific chocolate (CLF/CP) [ 28.5 (17 - 20) vs. 34.5 (13-26) 0.03]. The residual function, as assessed by the London Handicap scale, also improved significantly after the HCL/PR arm [0.49 (0.33 - 0.62) vs. 0.64 (0.44 - 0.83) 0.01] and deteriorated after iso-calorific chocolate [00.44 (0.43 - 0.68) vs. 0.36 (0.33 - 0.62)0.03]. Likewise the Hospital Anxiety and Depression score also improved after the HCL/PR arm, but deteriorated after CLF/CP. Mean weight remained unchanged throughout the trial.</p> <p>Conclusion</p> <p>This study suggests that HCL/PR chocolate may improve symptoms in subjects with chronic fatigue syndrome.</p
Standardisation framework for the Maudsley staging method for treatment resistance in depression
Background:
Treatment-resistant depression (TRD) is a serious and relatively common clinical condition. Lack of consensus on defining and staging TRD remains one of the main barriers to understanding TRD and approaches to
intervention. The Maudsley Staging Method (MSM) is the first multidimensional model developed to define and stage treatment-resistance in “unipolar depression”. The model is being used increasingly in treatment and epidemiological studies of TRD and has the potential to support consensus. Yet, standardised methods for rating the MSM have not been described adequately. The aim of this report is to present standardised approaches for rating or completing the MSM.
Method:
Based on the initial development of the MSM and a narrative review of the literature, the developers of the
MSM provide explicit guidance on how the three dimensions of the MSM–treatment failure, severity of depressive
episode and duration of depressive episode– may be rated.
Result: The core dimension of the MSM, treatment failure, may be assessed using the Maudsley Treatment Inventory
(MTI), a new method developed for the purposes of completing the MSM. The MTI consists of a relatively comprehensive list of medications with options for rating doses and provisions treatment for multiple episodes. The second dimension, severity of symptoms, may be assessed using simple instruments such as the Clinical Global Impression, the Psychiatric Status Rating or checklist from a standard diagnostic checklist. The standardisation also provides a simple rating scale for scoring the third dimension, duration of depressive episode.
Conclusion:
The approaches provided should have clinical and research utility in staging TRD. However, in proposing this
model, we are fully cognisant that until the pathophysiology of depression is better understood, staging methods can only be tentative approximations. Future developments should attempt to incorporate other biological/ pathophysiological dimensions for staging
The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs
The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal–organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.National Cancer Institute (U.S.) (CA034992
Model-Based Therapeutic Correction of Hypothalamic-Pituitary-Adrenal Axis Dysfunction
The hypothalamic-pituitary-adrenal (HPA) axis is a major system maintaining body homeostasis by regulating the neuroendocrine and sympathetic nervous systems as well modulating immune function. Recent work has shown that the complex dynamics of this system accommodate several stable steady states, one of which corresponds to the hypocortisol state observed in patients with chronic fatigue syndrome (CFS). At present these dynamics are not formally considered in the development of treatment strategies. Here we use model-based predictive control (MPC) methodology to estimate robust treatment courses for displacing the HPA axis from an abnormal hypocortisol steady state back to a healthy cortisol level. This approach was applied to a recent model of HPA axis dynamics incorporating glucocorticoid receptor kinetics. A candidate treatment that displays robust properties in the face of significant biological variability and measurement uncertainty requires that cortisol be further suppressed for a short period until adrenocorticotropic hormone levels exceed 30% of baseline. Treatment may then be discontinued, and the HPA axis will naturally progress to a stable attractor defined by normal hormone levels. Suppression of biologically available cortisol may be achieved through the use of binding proteins such as CBG and certain metabolizing enzymes, thus offering possible avenues for deployment in a clinical setting. Treatment strategies can therefore be designed that maximally exploit system dynamics to provide a robust response to treatment and ensure a positive outcome over a wide range of conditions. Perhaps most importantly, a treatment course involving further reduction in cortisol, even transient, is quite counterintuitive and challenges the conventional strategy of supplementing cortisol levels, an approach based on steady-state reasoning
Evidence for a heritable predisposition to Chronic Fatigue Syndrome
<p>Abstract</p> <p>Background</p> <p>Chronic Fatigue Syndrome (CFS) came to attention in the 1980s, but initial investigations did not find organic causes. Now decades later, the etiology of CFS has yet to be understood, and the role of genetic predisposition in CFS remains controversial. Recent reports of CFS association with the retrovirus xenotropic murine leukemic virus-related virus (XMRV) or other murine leukemia related retroviruses (MLV) might also suggest underlying genetic implications within the host immune system.</p> <p>Methods</p> <p>We present analyses of familial clustering of CFS in a computerized genealogical resource linking multiple generations of genealogy data with medical diagnosis data of a large Utah health care system. We compare pair-wise relatedness among cases to expected relatedness in the Utah population, and we estimate risk for CFS for first, second, and third degree relatives of CFS cases.</p> <p>Results</p> <p>We observed significant excess relatedness of CFS cases compared to that expected in this population. Significant excess relatedness was observed for both close (p <0.001) and distant relationships (p = 0.010). We also observed significant excess CFS relative risk among first (2.70, 95% CI: 1.56-4.66), second (2.34, 95% CI: 1.31-4.19), and third degree relatives (1.93, 95% CI: 1.21-3.07).</p> <p>Conclusions</p> <p>These analyses provide strong support for a heritable contribution to predisposition to Chronic Fatigue Syndrome. A population of high-risk CFS pedigrees has been identified, the study of which may provide additional understanding.</p
Impaired immune function in Gulf War Illness
<p>Abstract</p> <p>Background</p> <p>Gulf War Illness (GWI) remains a serious health consequence for at least 11,000 veterans of the first Gulf War in the early 1990s. Our understanding of the health consequences that resulted remains inadequate, and this is of great concern with another deployment to the same theater of operations occurring now. Chronic immune cell dysfunction and activation have been demonstrated in patients with GWI, although the literature is not uniform. We exposed GWI patients and matched controls to an exercise challenge to explore differences in immune cell function measured by classic immune assays and gene expression profiling.</p> <p>Methods</p> <p>This pilot study enrolled 9 GWI cases identified from the Department of Veterans Affairs GWI registry, and 11 sedentary control veterans who had not been deployed to the Persian Gulf and were matched to cases by sex, body mass index (BMI) and age. We measured peripheral blood cell numbers, NK cytotoxicity, cytokines and expression levels of 20,000 genes immediately before, immediately after and 4 hours following a standard bicycle ergometer exercise challenge.</p> <p>Results</p> <p>A repeated-measures analysis of variance revealed statistically significant differences for three NK cell subsets and NK cytotoxicity between cases and controls (p < 0.05). Linear regression analysis correlating NK cell numbers to the gene expression profiles showed high correlation of genes associated with NK cell function, serving as a biologic validation of both the <it>in vitro </it>assays and the microarray platform. Intracellular perforin levels in NK and CD8 T-cells trended lower and showed a flatter profile in GWI cases than controls, as did the expression levels of the perforin gene PRF1. Genes distinguishing cases from controls were associated with the glucocorticoid signaling pathway.</p> <p>Conclusion</p> <p>GWI patients demonstrated impaired immune function as demonstrated by decreased NK cytotoxicity and altered gene expression associated with NK cell function. Pro-inflammatory cytokines, T-cell ratios, and dysregulated mediators of the stress response (including salivary cortisol) were also altered in GWI cases compared to control subjects. An interesting and potentially important observation was that the exercise challenge augments these differences, with the most significant effects observed immediately after the stressor, possibly implicating some block in the NK and CD8 T-cells ability to respond to "stress-mediated activation". This has positive implications for the development of laboratory diagnostic tests for this syndrome and provides a paradigm for exploration of the immuno-physiological mechanisms that are operating in GWI, and similar complex syndromes. Our results do not necessarily elucidate the cause of GWI, but they do reveal a role for immune cell dysfunction in sustaining illness.</p
Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis
Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry, inappropriate immunological memory and autoimmunity
Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective
In human and non-human animals the steroid hormones cortisol and testosterone are involved in social aggression and recent studies suggest that these steroids might jointly regulate this behavior. It has been hypothesized that the imbalance between cortisol and testosterone levels is predictive for aggressive psychopathology, with high testosterone to cortisol ratio predisposing to a socially aggressive behavioral style. In this review, we focus on the effects of cortisol and testosterone on human social aggression, as well as on how they might modulate the aggression circuitry of the human brain. Recently, serotonin is hypothesized to differentiate between impulsive and instrumental aggression, and we will briefly review evidence on this hypothesis. The aim of this article is to provide a theoretical framework for the role of steroids and serotonin in impulsive social aggression in humans
Serotonergic Contribution to Boys' Behavioral Regulation
Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure.Participants were 23 boys (age 10 years) with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered.Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter.The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors
DNA Interactions of Monofunctional Organometallic Ruthenium(II) Antitumor Complexes in Cell-free Media
Modifications of natural DNA in a cell-free medium by antitumor monodentate Ru(II) arene
compounds of the general formula [(eta 6-arene)Ru(en)Cl]+ (arene ) biphenyl, dihydroanthracene,
tetrahydroanthracene, p-cymene, or benzene; en ) ethylenediamine) were studied by atomic absorption,
melting behavior, transcription mapping, circular and linear dichroism, plasmid unwinding, competitive
ethidium displacement, and differential pulse polarography. The results indicate that these complexes
bind preferentially to guanine residues in double-helical DNA. The data are consistent with DNA binding
of the complexes containing biphenyl, dihydroanthracene, or tetrahydroanthracene ligands that involves
combined coordination to G N7 and noncovalent, hydrophobic interactions between the arene ligand and
DNA, which may include arene intercalation and minor groove binding. In contrast, the single hydrocarbon
rings in the p-cymene and benzene ruthenium complexes cannot interact with double-helical DNA by
intercalation. Interestingly, the adducts of the complex containing p-cymene ligand, which has methyl
and isopropyl substituents, distort the conformation and thermally destabilize double-helical DNA distinctly
more than the adducts of the three multiring ruthenium arene compounds. It has been suggested that the
different character of conformational alterations induced in DNA, and the resulting thermal destabilization,
may affect differently further “downstream” effects of damaged DNA and consequently may result in
different biological effects of this new class of metal-based antitumor compounds. The results point to a
unique profile of DNA binding for Ru(II) arene compounds, suggesting that a search for new anticancer
compounds based on this class of complexes may also lead to an altered profile of biological activity in
comparison with that of metal-based antitumor drugs already used in the clinic or currently on clinical
trials
- …