834 research outputs found

    Idades preliminares U-Pb, ID-TIMS, das Ilhas Berlengas, Portugal = Preliminary ID-TIMS, U-Pb ages of the Berlengas Islands, Portugal

    Get PDF
    Apresentam-se os resultados provisórios das idades U-Pb de duas amostras das ilhas do grupo das Berlengas. No Farilhão Grande uma amostra de granito de duas micas com silimanite foi recolhida de um complexo metamórfico. Esta amostra ofereceu três fracções de monazite com idade 377+-1 Ma, interpretada como metamórfica, enquanto uma fracção de zircões de concórdia 483 Ma sugeriu uma idade Tremadoc. Esta última fracção é herdada, provavelmente do volumoso magmatismo do Ordovícico Inferior existente na Ibéria. Na Berlenga Grande o granito apresenta fracções de monazite e zircão concordantes de 307,4+-0,8 Ma.

    Direct medical costs of severe asthma in two colombian reference centers

    Get PDF
    Objectives: Severe asthma, although infrequent, generates an important clinical and economic burden in both patients and healthcare system. We aimed to describe demographic and clinical characteristics, exacerbations, healthcare resource utilization (HRU), and annual direct medical costs in a severe asthma patient cohort in Colombia. Methods: Cost ofillness study from payer perspective. Patients with clinicianconfirmed severe asthma diagnosis (GINA criteria) from two specialized reference centers between January 2014 and August 2018 were included. The last year within this period under GINA step 4/5 therapy was observed for each patient. Clinical information was extracted from medical records, and HRU from hospital invoices and public price lists. Results: 147 patients were included, 59% female. Mean (6SD) age and time with asthma diagnosis was 46615 and 21617 years, respectively. Most frequent comorbidities were allergic rhinitis (70%), conjunctivitis (27%) and hypertension (19%). Most common sensitization cause was house dust mite (61%). Median baseline blood eosinophil count was 260 cells/ml (range 10-4,040), mean total IgE serum level was 69761,893 IU/ml. The mean annual frequency of HRU was 5.064.0 for laboratory tests, 4.161.2 for medical visits, 1.061.5 for emergency visits, 0.360.7 for hospitalizations, and 0.160.3 for ICU. Omalizumab was prescribed in 42.2% of patients, with a mean among users of 30.2620.3 vials per year. Mean annual direct cost for outpatient care was 4,743.666,331.1 USD (range 256.7-31,286.1) (1 USD=2,956.4 COP); medications were responsible for 98% of costs. Data from 55 hospitalizations was obtained, 4 in ICU. Mean stay and cost per episode were 6.564.9 days and 1,010.561,379.9 USD in general ward, and 14.164.1 days and 3768.963748.2 USD in ICU. Conclusions: Severe asthma is a costly disease for the Colombian health system. Most of the direct outpatient medical costs in this cohort were caused by pharmacological therapy, particularly omalizumab. Funding: GSK (PRJ2813

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.This work was primarily funded by an EU Horizon 2020 grant “PIGSs” (727966) and a ZELS BBSRC award “Myanmar Pigs Partnership (MPP)” (BB/L018934/1). G.G.R.M., E.L.M., and L.A.W. were supported by a Sir Henry Dale Fellowship to L.A.W. jointly funded by the Wellcome Trust and the Royal Society (109385/Z/15/Z). N.H. was supported by a Challenge grant from the Royal Society (CH16011) and an Isaac Newton Trust Research Grant [17.24(u)]. G.G.R.M. was also supported by a Research Fellowship at Newnham College. S.B. is supported by the Medical Research Council (MR/V032836/1). PIC North America provided part of the funds for the sequencing of the isolates from the USA. A.J.B. and M.M. were funded by Medical Research Council and Biotechnology and Biological Sciences Research Council studentships respectively, and M.M. was co-funded by the Raymond and Beverly Sackler Fund. We would like to acknowledge Susanna Williamson at the APHA for providing samples, Oscar Cabezón for sampling of the wild boar population in Spain, Mark O’Dea for access to sequence data from Australian isolates, the PIGSs and MPP consortiums for providing samples and helpful discussions, Julian Parkhill and John Welch for helpful discussions, and two anonymous reviewers for their valuable suggestions for improving the manuscript. This research was funded in whole or in part by the Wellcome Trust. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission.info:eu-repo/semantics/publishedVersio

    Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC16 from infected cell membrane to Maurer’s clefts

    Get PDF
    Merozoite release from infected erythrocytes is a complex process, which is still not fully understood. Such process was characterised at ultra-structural level in this work by labelling erythrocyte membrane with a fluorescent lipid probe and subsequent photo-conversion into an electron-dense precipitate. A lipophilic DiIC16 probe was inserted into the infected erythrocyte surface and the transport of this phospholipid analogue through the erythrocyte membrane was followed up during 48 h of the asexual erythrocyte cycle. The lipid probe was transferred from infected erythrocyte membranes to Maurer’s clefts during merozoite release, thereby indicating that these membranes remained inside host cells after parasite release. Fluorescent structures were never observed inside infected erythrocytes preceding merozoite exit and merozoites released from infected erythrocyte were not fluorescent. However, specific precipitated material was localised bordering the parasitophorous vacuole membrane and tubovesicular membranes when labelled non-infected erythrocytes were invaded by merozoites. It was revealed that lipids were interchangeable from one membrane to another, passing from infected erythrocyte membrane to Maurer’s clefts inside the erythrocyte ghost, even after merozoite release. Maurer’s clefts became photo-converted following merozoite release, suggesting that these structures were in close contact with infected erythrocyte membrane during merozoite exit and possibly played some role in malarial parasite exit from the host cell

    Tele-entomology and tele-parasitology: A citizen science-based approach for surveillance and control of Chagas disease in Venezuela.

    Get PDF
    Chagas Disease (CD), a chronic infection caused by the Trypanosoma cruzi parasite, is a Neglected Tropical Disease endemic to Latin America. With a re-emergence in Venezuela during the past two decades, the spread of CD has proved susceptible to, and inhibitable by a digital, real-time surveillance system effectuated by Citizen Scientists in communities throughout the country. The #TraeTuChipo (#BringYourKissingBug) campaign implemented in January 2020, has served as such a strategy counting on community engagement to define the current ecological distribution of CD vectors despite the absence of a functional national surveillance program. This pilot campaign collected data through online surveys, social media platforms, and/or telephone text messages. A total of 79 triatomine bugs were reported from eighteen Venezuelan states; 67 bugs were identified as Panstrongylus geniculatus, 1 as Rhodnius pictipes, 1 as Triatoma dimidiata, and 10 as Triatoma maculata. We analyzed 8 triatomine feces samples spotted from 4 Panstrongylus geniculatus which were confirmed positive by qPCR for T. cruzi. Further molecular characterization of discrete typing units (DTUs), revealed that all samples contained TcI, the most highly diverse and broadly distributed strain of T. cruzi. Moreover, analysis of the mitochondrial 12S gene revealed Myotis keaysi, Homo sapiens, and Gallus gallus as the main triatomine feeding sources. This study highlights a novel Citizen Science approach which may help improve the surveillance systems for CD in endemic countries

    Research priorities for freshwater mussel conservation assessment

    Get PDF
    Freshwater mussels are declining globally, and effective conservation requires prioritizing research and actions to identify and mitigate threats impacting mussel species. Conservation priorities vary widely, ranging from preventing imminent extinction to maintaining abundant populations. Here, we develop a portfolio of priority research topics for freshwater mussel conservation assessment. To address these topics, we group research priorities into two categories: intrinsic or extrinsic factors. Intrinsic factors are indicators of organismal or population status, while extrinsic factors encompass environmental variables and threats. An understanding of intrinsic factors is useful in monitoring, and of extrinsic factors are important to understand ongoing and potential impacts on conservation status. This dual approach can guide conservation status assessments prior to the establishment of priority species and implementation of conservation management actions.NF-R was supported by a post-doctoral fellowship (Xunta de Galicia Plan I2C 2017-2020, 09.40.561B.444.0) from the government of the autonomous community of Galicia. BY was supported by the Ministry of Science and Higher Education (no. 0409-2016-0022). DLS was supported by the G. E. Hutchinson Chair at the Cary Institute of Ecosystem Studies. AO was supported by the Russian Foundation for Basic Research (no. 17-44-290016). SV was funded by European Investment Funds by FEDER/COMPETE/POCI- Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT-Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. NF-R is very grateful to the University of Oklahoma Biological Survey for providing space to work in the U.S. and especially to Vaughn Lab members. Authors are very grateful to Akimasa Hattori, Allan K. Smith, Andrew Roberts, Daniel Graf, David Stagliano, David T. Zanatta, Dirk Van Damme, Ekaterina Konopleva, Emilie Blevins, Ethan Nedeau, Frankie Thielen, Gregory Cope, Heinrich Vicentini, Hugh Jones, Htilya Sereflisan, Ilya Vikhrev, John Pfeiffer, Karen Mock, Mary Seddon, Katharina Stockl, Katarzyna Zajac, Kengo Ito, Marie Capoulade, Marko Kangas, Michael Lange, Mike Davis, Pirkko-Liisa Luhta, Sarina Jepsen, Somsak Panha, Stephen McMurray, G. Thomas Watters, Wendell R. Haag, and Yoko Inui for their valuable contribution in the initial selection and description of extrinsic and intrinsic factors. We also wish to thank Dr. Amanda Bates, Chase Smith, and two anonymous reviewers for comments on earlier drafts of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

    A Bacia do Algarve: Estratigrafia, Paleogeografia e Tectónica

    Get PDF
    A “Bacia do Algarve” corresponde, segundo a literatura científica tradicional, aos terrenos mesocenozóicos que orlam o Sul de Portugal, desde o Cabo de São Vicente ao rio Guadiana (~140km), penetrando irregularmente para o interior entre 3 km a 25 km, sobre terrenos de idade carbónica da Zona Sul Portuguesa. O hiato, de aproximadamente 70 milhões de anos, materializado pela discordância angular entre as rochas sedimentares de tipo flysch do Carbónico, metamorfizadas e deformadas durante a orogenia varisca, e as rochas sedimentares continentais do Triásico inferior provável, separa dois ciclos de Wilson. Os sedimentos carbónicos metamorfizados resultam do empilhamento orogénico de um possível prisma de acrecção associado à orogenia varisca e ao fecho de um oceano paleozóico e formação da Pangeia, enquanto que os sedimentos continentais triásicos resultam do fim do colapso e do arrasamento do orógeno varisco e início do estiramento continental que viriam a culminar com a separação das placas litosféricas África, Eurásia e América.Os sedimentos mais recentes do Mesozóico e os mais antigos bem datados do Cenozóico encontram-se separados por um outro hiato que ultrapassa ligeiramente os 70 milhões de anos na área emersa. Este hiato resulta duma alteração tectónica radical no contexto onde nessa época geológica se inseria a Bacia do Algarve. Esta mudança, que ocorreu no fim do Cenomaniano, resultou da rotação do vector de deslocamento da trajectória de África em relação à Eurásia, de aproximadamente NW-SE para SW-NE (segundo as coordenadas actuais, e.g. Dewey et al, 1989), poria termo ao regime distensivo e de bacia de tipo rifte na Bacia do Algarve, com o fim do regime transtensivo entre a região noroeste da placa África e sudoeste da placa Eurásia e início da colisão

    Evolution and Phylogenetic Analysis of Full-Length VP3 Genes of Eastern Mediterranean Bluetongue Virus Isolates

    Get PDF
    Bluetongue virus (BTV) is the ‘type’ species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979–2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an ‘eastern’ (BTV-9, -16 and -1) and a ‘western’ (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe
    corecore