733 research outputs found

    Magnetic field modulation of intense surface plasmon polaritons

    Get PDF
    We present correlated experimental and theoretical studies on the magnetic field modulation of Surface Plasmon Polaritons (SPPs) in Au/Co/Au trilayers. The trilayers were grown by sputter deposition on glass slides with the Co films placed at different distances from the surface and with different thickness. We show that it is possible to tailor Au/Co/Au trilayers with the critical thickness needed for optimum excitation of SPPs leading to large localized electromagnetic fields. The modification of the SPP wave vector by externally applied magnetic fields was investigated by measuring the magneto-optical activity in transverse configuration. In addition, using magneto-optics as a tool we determined the spatial distribution of the SPP generated electromagnetic fields within Au/Co/Au samples by analyzing the field-dependent optical response, demonstrating that it is possible to excite SPPs that exhibit large electromagnetic fields that are also magneto-optically active and therefore can be modulated by externally applied magnetic fields. (C)2010 Optical Society of Americ

    Order and phase nucleation in nonequilibrium nanocomposite Fe-Pt thin films with perpendicular magnetic anisotropy

    Get PDF
    We report on the time evolution of mass transport upon annealing nonequilibrium Fe-Pt nanocomposite films, leading to nucleation of L1(0) chemically ordered phase. The nonequilibrium nanocomposite films were fabricated by applying Fe(+) ion implantation to epitaxial Pt films grown on (001) MgO substrates, yielding Fe nanoclusters embedded in a Pt matrix at a tailored penetration depth. Time-resolved x-ray diffraction studies were carried out using synchrotron radiation, allowing determination of the activation energy for nucleation of the FePt L1(0) phase within the segregated nanoclusters during annealing. The growth of the segregated L1(0) ordered phase was modeled using ideal grain-size law and found to be dominated by strain-driven surface nucleation. The activation energies were found to correlate with the nanocluster size. Magnetic characterization of selected annealed samples indicates perpendicular magnetic anisotropy with high coercive field coincident with high value of the chemical order parameter of the ordered phase within the magnetic nanoclusters

    Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles

    Get PDF
    Metallic nanoparticles (NPs) are suitable platforms for miniaturized biosensing based on their optical and magneto-opticalproperties. It is possible to enhance the sensitivity of specific kinds of NPs by exploiting their optical and magneto-opticalproperties under suitable external magnetic field modulation. Here, the magneto-opticalproperties of Fe–Ag core-shell ferromagnet-noble metal NPs have been investigated as a function of the incident light frequency. For Fe–Ag NPs with a concentration ratio around 25:75, an optical absorption band centered at 3 eV due to localized surface plasmon resonance (LSPR) excitation is observed. A strong enhancement of the Faraday rotation is also observed, greatly exceeding the value estimated for pure Fe NPs, also associated with the LSPR excitation. Our findings open up the possibility of highly sensitive miniaturized magneto-optically modulated biosensing

    Magneto-optical properties of Co/ZnO multilayer films

    Get PDF
    Multilayer films of ZnO with Co were deposited on glass substrates then annealed in a vacuum. The magnetisation of the films increased with annealing but not the magnitude of the magneto-optical signals. The dielectric functions for the films were calculated using the MCD spectra. A Maxwell Garnett theory of a metallic Co/ZnO mixture is presented. The extent to which this explains the MCD spectra taken on the films is discussed.Comment: This paper was presented at ICM (2009) and is accepted in this form for the proceeding

    Optimizing the planar structure of (1 1 1) Au/Co/Au trilayers

    Full text link
    Au/Co/Au trilayers are interesting for a range of applications which exploit their unusual optical and electronic transport behaviour in a magnetic field. Here we present a comprehensive structural and morphological study of a series of trilayers with 0–7 nm Co layer thickness fabricated on glass by ultrahigh vacuum vapour deposition. We use a combination of in situ electron diffraction, atomic force microscopy and x-ray scattering to determine the optimum deposition conditions for highly textured, flat and continuous layered structures. The 16 nm Au-on-glass buffer layer, deposited at ambient temperature, is found to develop a smooth (1 1 1) texture on annealing at 350 °C for 10 min. Subsequent growth of the Co layer at 150 °C produces a (1 1 1) textured film with lateral grain size of ∼150 nm in the 7 nm-thick Co layer. A simultaneous in-plane and out-of-plane Co lattice expansion is observed for the thinnest Co layers, converging to bulk values for the thickest films. The roughness of the Co layer is similar to that of the Au buffer layer, indicative of conformal growth. The 6 nm Au capping layer smoothens the trilayer surface, resulting in a surface roughness independent of the Co layer thickness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58140/2/d7_9_003.pd

    Capping layer effects in the structure and composition of Co nanoparticle ultrathin films

    Get PDF
    In this work, we present the correlation of the magnetic and structural properties of Co nanoparticles deposited by sputtering on Si3N4 substrates at different temperatures, and covered with different capping layers, two insulators, AlN and MgO, and a metal, Pt. High-resolution transmission electron microscopy shows the formation of CoPt3 and Co2N, for the Pt and AlN capping layers, respectively, giving to a significant change of the magnetic behavior. When using a cap of MgO, energy-filtered transmission electron microscopy shows an oxidized shell covering the Co nanoparticles with thickness decreasing as the deposition temperature increases, explaining the changes in the magnetic response induced by the MgO capping layer.This work has been funded by the Spanish Project No.MAT2002-04484-C03-02. Y.H. acknowledges the Consejo Superior de Investigaciones Científicas CSIC and Ramón y Cajal Program for financial support.Peer reviewe

    Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Get PDF
    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization

    Control of the perpendicular magnetic anisotropy of FePd films via Pd capping deposition

    Get PDF
    We have investigated the influence of two capping layers (MgO and Pd) on the magnetic anisotropy of highly anisotropic L10 FePd films. While we mainly found perpendicular magnetic anisotropy in MgO capped films, we observed that the Pd capping layer induces formation of an additional new phase near the FePd/Pd interface that exhibits in-plane magnetic anisotropy. The combined effect of these two anisotropies results in global canted magnetic anisotropy. Thus, our findings illustrate a mechanism to influence the magnetic anisotropy in FePd highly ordered alloys via adequate choice of capping layer materials.Peer reviewe

    Five-year trajectories of multimorbidity patterns in an elderly Mediterranean population using Hidden Markov Models

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordThis study aimed to analyse the trajectories and mortality of multimorbidity patterns in patients aged 65 to 99 years in Catalonia (Spain). Five year (2012–2016) data of 916,619 participants from a primary care, population-based electronic health record database (Information System for Research in Primary Care, SIDIAP) were included in this retrospective cohort study. Individual longitudinal trajectories were modelled with a Hidden Markov Model across multimorbidity patterns. We computed the mortality hazard using Cox regression models to estimate survival in multimorbidity patterns. Ten multimorbidity patterns were originally identified and two more states (death and drop-outs) were subsequently added. At baseline, the most frequent cluster was the Non-Specific Pattern (42%), and the least frequent the Multisystem Pattern (1.6%). Most participants stayed in the same cluster over the 5 year follow-up period, from 92.1% in the Nervous, Musculoskeletal pattern to 59.2% in the Cardio-Circulatory and Renal pattern. The highest mortality rates were observed for patterns that included cardio-circulatory diseases: Cardio-Circulatory and Renal (37.1%); Nervous, Digestive and Circulatory (31.8%); and Cardio-Circulatory, Mental, Respiratory and Genitourinary (28.8%). This study demonstrates the feasibility of characterizing multimorbidity patterns along time. Multimorbidity trajectories were generally stable, although changes in specific multimorbidity patterns were observed. The Hidden Markov Model is useful for modelling transitions across multimorbidity patterns and mortality risk. Our findings suggest that health interventions targeting specific multimorbidity patterns may reduce mortality in patients with multimorbidity.Carlos III Institute of Health, Ministry of Economy and Competitiveness (Spain)European Regional Development FundDepartment of Health of the Catalan GovernmentCatalan Governmen
    • …
    corecore